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ABSTRACT 

 

Two multi-speaker datasets were used, one of them 

from a laboratory corpus, one from forensic 

casework. Long-term formants were analysed, both 

with the maximally performing GMM-UBM 

approach and with simpler methods for likelihood 

ratio (LR) calculation. Results show that for the 

casework data, though not the laboratory data, GMM-

UBM performance could be approximated with the 

simple methods. Reasons for the difference probably 

lie in signal quality and speech style differences 

which are expected to affect the complexity of the 

long-term formant distributions. Results support the 

view that simple methods of LR calculation can 

improve the process of estimating LRs, which is a 

widely practiced method in forensic science, they can 

be a point of departure for the development of more 

complex methods, or an educational device. 
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1. INTRODUCTION 

The view that conclusions of forensic science 

casework should be expressed in terms of likelihood 

ratios (LR) has been gradually gaining acceptance 

internationally [1, 2]. Methods of calculating LRs are 

found across the forensic sciences with more progress 

in some than others so far. Forensic voice comparison 

is actually one of the very earliest forensic sciences 

having promoted and developed useful concepts and 

tools in that regard [3, 4, 5]. Methods of LR 

calculation are usually complex. In voice comparison, 

the most complex ones are from the domain of 

automatic speaker recognition [6]. Fairly complex 

also are methods used in semiautomatic speaker 

recognition, i.e. the application of manually 

performed or supervised methods of (most 

commonly) acoustic phonetics to voice comparison 

[7]. The two best known of such methods are the 

Multivariate Kernel Density (MVKD) approach and 

the Gaussian Mixture Model-Universal Background 

Model (GMM-UBM) approach. The former was 

developed for the purpose of various forensic 

sciences, most specifically glass evidence [8], and 

initially adapted to semiautomatic speaker 

recognition by Rose [9]. The latter was developed in 

automatic speaker recognition [10] and was initially 

adapted to semiautomatic speaker recognition by 

Becker et al. [11]. The MVKD approach is best suited 

for token-based data (e.g. twelve tokens of /a/ per 

recording with one set of formant measurements 

each) and the GMM-UBM is best suited for stream-

based data (e.g. measurements of formants every 10 

milliseconds scanning through the vocalic parts of a 

recording). Since the data analysed in this study are 

semiautomatic and stream-based, the GMM-UBM 

approach will be used to establish the top-line 

indicating optimum performance.  

The goal of this study is to compare the 

performance of one of these high-end methods to the 

performance characteristics of simpler methods of LR 

calculation. There are several reasons why we think 

this is a worthwhile endeavour. Firstly, estimation of 

LRs in situations where insufficient data are available 

to calculate them is an option that is explicitly 

included in current guidelines for forensic analysis 

[12]. The simpler the methods the better the analyst 

can understand them and use them as conceptual tools 

in the estimation process, thereby making the 

estimations more concept-driven and less intuition-

driven. Secondly, simple methods can form the 

beginning of the development of more complex ones 

in new areas of the voice comparison feature space or 

in other forensic sciences with little exposure so far 

to the LR framework. Thirdly, looking at simple 

methods can have an educational aspect. One can 

observe how performance can gradually change by 

adding more complexity to the methods. 

2. METHODS 

Two datasets were used as the basis for the 

experiments in this paper. The first one is called GFS 

2.0 (German Forensic Speech). It contains 

anonymized speech from forensic casework 

involving telephone interception data. There are data 

from 22 male adult speakers of German, each with 

one questioned speaker recording and one suspect 

recording. There are additional single recordings 

from 25 adult male speakers recorded under the same 

conditions. That latter collection will be referred to as 

the UBM (Universal Background model). More detail 
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on GFS is found in [13, 14]. The second dataset is a 

subset of Pool 2010 [15]. This subset contains 21 

male adult speakers with two recordings each and a 

UBM consisting of 22 further such speakers. The 

same dataset was used in [16], where further 

description is provided. Long-term formant analysis 

(LTF) [17] was performed on these datasets, and the 

data streams containing F1 to F3 from the vowels in 

each recording form the input to the methods applied. 

Among the LR calculation methods referred to as 

simple in the title of this paper, three different ones 

were used, M(ethod) 1 to 3. M2 was performed with 

two variations, called M2a and M2b.  

Method 1: M1 generates pure similarity scores. In 

a two-dimensional matrix of 22 questioned-speaker 

recordings compared against 22 suspected-speaker 

recordings each of the 484 comparison cells contains 

the result of the following calculation (for the GFS 

dataset; for Pool 2020 it is 21 x 21 test speakers). 

Separately for each formant F1, F2, F3, the mean 

formant frequency value from the second recording is 

subtracted from the mean value of the first. The 

absolute value of the result is taken because it does 

not matter which of the two compared mean values is 

higher. Since scores represent degree of similarity, 

whereas subtraction results represent dissimilarity, a 

minus-sign is added to each of the results. 1 

Method 2: M2 generates scores that take into 

account both similarity and typicality, but no 

probabilities are involved. In addition to the step of 

similarity calculation in M1, each questioned-speaker 

value is also compared against the UBM. The result 

from the similarity calculation step is divided by the 

result from the typicality calculation step involving 

the UBM. Taking the absolute value and adding a 

minus-sign to the resulting ratio concludes the 

calculation. There are two versions of dealing with 

the UBM. In M2a the UBM value is the mean of the 

means (of F1 etc.) of all the 25 UBM-speakers (for 

GFS; 22 for Pool 2010). This is the value subtracted 

from each questioned-speaker recording in order to 

obtain the denominator of each of the ratios. In M2b, 

a given questioned-speaker value is compared against 

each UBM speaker and the mean of these 25 (or 22) 

comparisons is taken as the denominator of the ratio 

involving that questioned speaker. 

Method 3: M3 generates scores that take into 

account both similarity and typicality, and it does so 

by producing probabilities and arranging them in the 

structure of a LR. The formula for this was taken from 

Morrison [18, see p. 175]. In addition to the mean 

value for each questioned and suspected speaker, the 

formula also requires standard deviations for the 

suspect and the UBM. In order to obtain mean and 

standard deviation for the UBM, all individual 

formant values (extracted every 10 ms) across all 

UBM speakers were collated into one large data 

column, from which mean and SD were calculated. 

The formula assumes one single data point from the 

questioned speaker (or many points with averaging 

after the entire procedure), but here the mean value 

was taken for the questioned speaker instead – a 

methodological option mentioned on [18, p. 177]. 

Although the formula contains some higher-level 

math, the method which it captures can be visualised 

and understood quite easily (see figure on p. 175). 

Morrison (pers. comm.) presented this formula for 

introductory purposes, hence in a mainly educational 

intent. For these reasons M3 is classified with the 

simple LR methods. 

As the top-line method, expected to represent 

maximum performance, GMM-UBM was used. The 

same method was used in [14], where further 

technical detail is found (except that the option 

“symmetric testing” was disabled here). The software 

used for that purpose is VOCALISE version 1.6 [19]. 

The method was applied in two versions. In the one 

called GMM1, suspect model and UBM were 

modelled with a single Gaussian, in GMM3 with 

three Gaussians. MAP (maximum a posteriori) 

adaptation was not applied. In contrast to the GMM 

method, M1 to M3 were all limited to univariate data, 

i.e. there is a calculation for each formant separately. 

There was also no modelling of more complicated 

than single Gaussian distributions: M1 and 2 have no 

distribution model at all and M3 works with single 

Gaussians. Both of this differs from GMM, which can 

work with multivariate data and several Gaussians. 

Each of the methods generates scores. These are 

subsequently transformed into LRs with the use of 

logistic regression cross validation calibration or with 

fusion across all three formants ([20] on cross 

validation, [18] on calibration and fusion). Some 

results are shown visually as Tippett plots [7] and all 

reported numerically as Equal Error Rate (EER, 

convex hull method) and log-likelihood-ratio cost 

(Cllr) [21]. For calibration, fusion, plots and 

performance calculation the software BIO-METRICS 

version 1.8 [22] was used. 

3. RESULTS 

Figure 1 shows Tippett plots for the score results (not 

the calibrated LRs) of Methods 1 to 3 in the GFS 

dataset, applied to the parameter F3, which turns out 

to be the most successful among the single formants. 

In the Tippett plots, same-speaker scores are shown 

in the cumulative distributions rising from left to right 

and different-speaker scores are the ones rising from 

right to left. 
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Figure 1: Tippett plots of scores for parameter F3 

analysed with Methods 1, 2a, 2b and 3 on dataset GFS. 

(Cllr values shown are prior to calibration.) 

 

Fig. 1 shows that M1 generates a wide range of 

scores, which due to the added minus-sign have the 

value zero as upper limit (that limit also holds for 

M2ab). All the other methods result in scores that are 

limited to a much narrower range of values. This 

range is expanded in Fig. 2. 

 
Figure 2: Tippett plots of scores for parameter F3 

analysed with Methods 2a, 2b and 3 on dataset GFS. 

Green vertical line indicates the value 1. 

 

Fig. 2 shows that M2a and M2b have similar patterns 

but there are more values extending into the lower 

range of the scores in M2a. As will be discussed 

below, this can be at least partially the result of 

outliers that are due to a limitation of the method. M3 

generates scores that in their intersection point are 

quite close to the value one. This proximity to unity 

indicates that the purpose of the formula behind M3 

to create LRs has been successful, i.e. the scores are 

quite well calibrated even before applying logistic 

regression calibration. 

Speaker discrimination performance measured as 

EER and Cllr for GFS is shown in Table 1 (lower 

values indicate better performance). Addressing EER 

first, when the different methods are compared there 

are no clear systematic differences except that the 

results for F1 and F2 are better with GMM3 (but not 

GMM1) than with the simple methods. F1 and F2 

capture phonological vowel distinctions, F3 only 

marginally so. It could therefore be expected that the 

distributions of F1 and F2 values across a recording 

are more complex than the distribution of F3, because 

they capture differences between different vowel 

categories. In previous LTF studies this effect 

however is stronger for F2 than F1 [16, 23 for 

illustration], whereas here the degree of improvement 

is similar, though indeed proportionally slightly 

stronger for F2. Three Gaussians allows for a better 

modelling of complex distributions than one (in 

GMM1 as well as M3) or none at all (other methods), 

which would explain the improvement. 

 

Method F1 F2 F3 Fusion 

F123 

Multiv

F123 

M1 36.3 

0.93 

34.9 

0.91 

21.8 

0.69 

20.0 

0.60 

- 

M2a 37.2 

1.09 

36.5 

1.00 

23.2 

1.31 

35.4 

1.41 

- 

M2b 36.2 

0.92 

34.6 

0.94 

23.5 

0.73 

20.8 

0.66 

- 

M3 38.0 

0.97 

39.0 

0.95 

26.5 

0.84 

26.1 

0.82 

- 

GMM1 36.1 

0.91 

33.2 

0.89 

25.4 

0.76 

19.2 

0.68 

20.9 

0.68 

GMM3 32.1 

0.89 

29.2 

0.90 

25.0 

0.79 

20.0 

0.70 

21.5 

0.71 

 
Table 1: EER (upper value per cell) and Cllr (lower 

value) in GFS 2.0 for different methods applied to 

single formants, fusion of all three formants and 

multivariate combination of the formants, the latter 

only possible for GMM. 

 

When comparing EER in different formants and their 

fusion/combination, F3 turns out to be stronger than 

the other formants across methods. Fusion of all 

formants compared to single formants is of benefit for 

most methods. In GMM, where multivariate 

processing is possible, multivariate combination of 

the formants produces very similar results as fusion 

of the formants.  

Turning to the Cllr results now, Cllr most of the 

time has relative patterns similar to EER, which is 

expected because discrimination is part of what Cllr 

measures (and calibration loss, which can affect Cllr, 

is minimised due to cross validation calibration or 

fusion). There is strong discrepancy however in M2a, 

where values of Cllr above 1 occur (1 is chance level). 

These are likely due to outlier scores that originate 

from the circumstance that when the questioned 

speaker value is close to the UBM value, the 

difference approximates zero and this can strongly 

increase the value of the ratio calculated in M2a 

(hence reduce the final score when the minus-sign is 

added; see Figs. 1 and 2). A few of such problems also 

occurred in M2b, but less frequently or strongly so. 
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Method F1 F2 F3 Fusion 

F123 

Multiv

F123 

M1 44.9 

1.01 

30.3 

0.88 

26.0 

0.71 

23.0 

0.66 

- 

M2a 43.5 

1.00 

35.8 

1.00 

31.3 

1.91 

40.8 

1.81 

- 

M2b 43.0 

1.02 

28.9 

0.89 

28.3 

0.73 

24.5 

0.69 

- 

M3 45.7 

1.01 

39.9 

0.99 

27.7 

0.82 

27.6 

0.81 

- 

GMM1 34.4 

0.92 

30.4 

0.85 

28.1 

0.74 

22.8 

0.64 

20.6 

0.65 

GMM3 27.5 

0.83 

19.2 

0.66 

25.8 

0.72 

11.8 

0.42 

11.2 

0.49 
 

Table 2: EER (upper values) and Cllr (lower 

values) in Pool 2010. 

 

Table 2 shows EER and Cllr for the Pool 2010 

dataset. Pool 2010 is based on a laboratory collection 

and is expected to yield better performance than the 

real-case data in GFS. A comparison between the 

different methods again shows an improvement for 

F1 and F2 of GMM3 over the simple methods  (for 

F1 also of GMM1). Proportionally this improvement 

is stronger now than it was with the GFS data. 

Percentage of improvement is again slightly higher 

for F2 than for F1. It is likely that the formant 

distributions are more complex in the Pool 2010 data 

than the GFS case data because the formants can be 

measured better on average and the speech style in 

Pool 2010 is farther to the right on a scale between 

casual and clear speech. This could explain why the 

improvement of GMM3 over the simple methods is 

stronger with the Pool 2010 data. When all these 

formants are fused or combined, EER is considerably 

better with Pool 2010 than GFS.  

The Cllr results in Table 2 generally follow the 

pattern of EER, with the same kind of problems for 

M2a as before. 

4. CONCLUSIONS 

Based on two datasets involving long-term formant 

analysis, comparisons were made between the use of 

a method that is state-of-the-art for semiautomatic 

voice comparison and simpler methods of LR 

calculation. Justification for the term LR is given by 

the use of cross validation calibration, which turns 

even the results of the simplest method of pure 

similarity scoring (M1) into LRs. When the methods 

are applied to real case data (GFS 2.0) the simple 

methods show nearly the same speaker discrimination 

performance as the top-line method. When applied to 

a laboratory collection (Pool 2020), the top-line 

method clearly outperforms the simple methods, 

which is probably due to more complex formant value 

distributions caused by more defined formant 

structure and a clearer speech style.  

The demonstrated relative success of the simple 

methods with case data does not imply that they 

should be preferred in casework over state-of-the-art 

methods if these are available, nor that pure similarity 

scores should be used in more than preliminary ways 

[24]. Moreover, it is hard to predict whether even 

within casework, conditions occur that give the more 

complex methods a clear advantage over simpler 

ones. One crucial factor seems to be whether the 

forensic feature analysed can be approximated by a 

normal distribution or whether the distribution of 

feature values is more complex. Features might also 

have a multivariate structure, which is the case with 

formants. As could be shown however, performance 

of multivariate processing (which the simple methods 

do not perform) is equivalent to univariate processing 

followed by fusion (which can be done with the 

simple methods). 

Though it is clear that simple methods should not 

replace complex ones if available, results have shown 

that simple methods of LR calculation in casework 

conditions can approximate the performance of 

complex ones (with the provision that this study is 

limited to just one type of forensic-phonetic feature). 

This is interesting since results could have turned out 

to show a greater performance difference. This 

outcome suggests there is some substance to the 

reasons for this study, stated in the introduction, that 

simple methods of LR calculation can serve as 

conceptual tools for LR estimation, a starting point 

for the development of more complex methods or an 

educational device. 

It should be mentioned that the method of cross 

validation calibration that was used to arrive at LRs 

from the scores, as well as fusion, are not entirely 

simple methods, but very common in forensic 

phonetics and increasingly so in other forensic 

sciences [1, 18]. The performance index EER 

however is not affected by calibration, but it can be 

by fusion. When thinking of LR estimation, the 

equivalent of numerical calibration would be to either 

have a good estimate of similarity and also typicality, 

e.g. based on experience and some research results 

[12 for examples], or, especially in the case of pure 

similarity scores (as in M1), to develop knowledge 

about where the turning point is between differences 

that support the same-origin hypothesis and those that 

support the different-origin hypothesis. Fusion would 

be about developing an idea about degree of 

correlation between features. 
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1Mathematical expression of the proposed methods.  

Abbreviations not explained so far: sx = score according to 

method x; i, j = the two recordings to be compared; f = 

formant results; Q = questioned speaker; S = suspected 

speaker; topline = mean. 

 

Method 1 

𝑠1(𝑖, 𝑗) = −|𝑓𝑄,𝑖 − 𝑓𝑆,𝑗|  

 

Method 2a 

𝑠2𝑎(𝑖, 𝑗) = − |
𝑓𝑄,𝑖 − 𝑓𝑆,𝑗

𝑓𝑄,𝑖 − 𝑓𝑈𝐵𝑀

| 

Method 2b 

𝑠2𝑏(𝑖, 𝑗) = −
|𝑓𝑄,𝑖−𝑓𝑆,𝑗|

1

𝐾
∑ |𝑓𝑄,𝑖−𝑓𝑈𝐵𝑀,𝑘|𝐾

𝑘=1

  

 

Method 3 

𝑠3(𝑖, 𝑗) =

1

𝜎𝑆√2𝜋
 𝑒

− 
(𝑓𝑄,𝑖−𝑓𝑆,𝑗)

2

2𝜎𝑆
2

1

𝜎𝑈𝐵𝑀√2𝜋
 𝑒

− 
(𝑓𝑄,𝑖−𝑓𝑈𝐵𝑀)

2

2𝜎𝑈𝐵𝑀
2
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