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ABSTRACT 

 

While ataxic dysarthria is traditionally considered a 

single diagnostic group, recent work suggests that 

distinct subtypes exist within this population. Here, 

we explore whether an unsupervised cluster analysis 

of diadochokinetic speech can detect the presence of 

potential subgroups, without a priori knowledge 

about individual speakers. Thirty-eight individuals 

with degenerative spinocerebellar ataxia produced 

[oj] repetitively. Fifteen acoustic markers were 

extracted from each production, consisting of 

temporally changing energy patterns that capture 

durational patterns and vocal tract shape changes. 

Principal component analysis yielded three 

dimensions (capturing 86% of the total variance), 

which were used as input for clustering analysis. 

Across clustering algorithms and evaluation criteria, 

2-3 clusters were consistently found. Although it 

remains to be tested how these clusters align with 

clinical diagnoses, these results suggest that distinct 

subgroups of speech impairments do exist within 

individuals with ataxia, and that these subgroups may 

be automatically detectable from a simple speech 

task. 
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1. INTRODUCTION 

Ataxic dysarthria is a disorder of the speech motor 

system, caused by a range of conditions involving the 

cerebellum [1-3]. Speech is characterized by distorted 

phonation (e.g., [3]), impaired articulatory control, 

and deficits in temporal coordination [2]. Articulatory 

difficulties surface as imprecise consonants as well as 

distorted vowel productions, while temporal 

impairments include elongated speech segments, 

reduced speaking rate, scanning speech (overly 

isochronous syllable durations), and irregular 

alternating motion rates [3, 4]. 

Although ataxic dysarthria is a single clinical 

diagnosis, a growing body of evidence suggests that 

distinct subgroups exist within this population [4-7]. 

Two distinct patterns within ataxic dysarthric speech 

have been observed – inflexible and instable speech 

productions [5-7, 16]. These classifications cover 

both the temporal and articulatory domain. The 

subgroup with instability presents with increased 

variability in both articulation (e.g., variably 

imprecise consonants) and temporal control (e.g., 

variable stress and rhythm). Conversely, the group 

with inflexibility displays extremely persistent 

speech patterns, including consistent articulatory 

errors, scanning speech, and isochronous durations. 

In a series of studies [5-7], the two categories have 

been used to perceptually identify subgroups within 

ataxic dysarthria. For example, out of 10 speakers in 

[5], five were classified with instability, one with 

inflexibility, and four with impairments combining 

features of both instability and inflexibility. Some 

evidence suggests that these subtypes align with 

specific causes of cerebellar damage [4]. Regularity 

of diadochokinetic speech has been shown, for 

example, to be impaired in patients, diagnosed with 

spinocerebellar ataxia type SCA3, whereas rate and 

prosodic modulation were affected in type SCA6 [4].  

To date, identifying potential subgroups within 

ataxic dysarthria has relied largely on perceptual 

ratings by experienced, clinically trained speech 

language pathologists. Despite extensive experience 

of clinicians, however, identifying perceptual 

subgroups shows only moderate inter-rater reliability 

[5]. Conversely, a recent study using naïve listeners 

to classify dysarthria subtypes without a priori 

knowledge of the speech characteristics of ataxic 

dysarthria showed higher reliability [7] but depended 

on a large number of listeners (>20). 

Previous work examining potential subgroups 

within ataxic dysarthria has relied principally on 

perceptual characterizations, rather than objective 

acoustic measures. To validate whether these 

perceptually identified subgroups exist, an automated 

tool that provides empirical and reliable identification 

of subgroups within ataxic dysarthria would be 

beneficial. Successful automated classification of 

ataxic dysarthria subtypes not only benefits clinical 

diagnosis but also lends theoretical support to the 

existence of these subtypes themselves. 

As a step towards such an automated tool, the 

current study attempts to identify subgroups within 

speakers diagnosed with degenerative spinocerebellar 

ataxia using unsupervised clustering. Although a 

similar approach, using linear discriminant analysis, 
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has previously been shown to identify clusters within 

this population [4], this study relied only on temporal 

and amplitude variation in the speech signal, omitting 

the clinically critical aspect of articulatory precision. 

Here, we include this factor in an unsupervised 

clustering analysis by using acoustically derived 

measures, quantifying changes in spectral energy 

over time [8-9]. Importantly, these energy changes 

correlate well with articulatory trajectories [8] and 

have recently been shown to be effective in separating 

hypokinetic, spastic, and flaccid dysarthria [9, 10]. A 

particularly beneficial characteristic is that this 

method separates supra-laryngeal articulation from 

the phonatory source. Consequently, it is possible to 

examine laryngeal as well as supra-laryngeal 

contributions to ataxic dysarthria subtypes. Our 

results show that unsupervised clustering based on 

these measures, extracted from diadochokinetic 

speech, consistently identifies subgroups within 

speakers with cerebellar degeneration. 

2. METHODS 

2.1. Participants 

38 participants (14 M, mean age: 60, range: 31-81; 24 

F, mean age: 60, range 23-77) participated in the 

study. Individuals were recruited via CoRDS [14] and 

were previously diagnosed with degenerative 

spinocerebellar ataxia (three SCA1; nine SCA2; ten 

SCA3; twelve SCA6; four SCA8). All speakers were 

native speakers of American English and reported no 

additional history of hearing, speech, or language 

disorders. The participants were compensated 

monetarily for participating in the study. The study 

was approved by the Institutional Review Board at 

the University of Wisconsin – Madison. 

2.2 Materials and equipment 

Diadochokinetic speech was collected during an 

assessment of dysarthria, including oral motor skill 

evaluation. For each task, participants were instructed 

to repeat a particular syllable as quickly and 

accurately as possible. In the current study, we 

examined the repetitive production of the syllable 

[oj]. This sequence targets anterior-posterior tongue 

motions, potentially revealing possible articulatory 

deficiencies in lingual control. The speech material 

was collected online via Zoom. The participants used 

their home computer and equipment (see 4. 

DISCUSSION about possible limitations). They were 

sitting in front of their computer at an individually 

preferred distance from the microphone, in the same 

fashion as during Zoom meetings. The recordings 

were sampled at 32 kHz (bit rate: 126 kbps) in a m4a 

format. All data processing, except where noted, was 

conducted in MATLAB [17].  

2.3 Acoustic parameter extraction 

The procedure has been described in detail previously 

[8, 9]. A summary follows here. For each participant, 

the .m4a sound files were converted to .wav files (32 

Khz, 16-bit PCM) in Audacity [18]. The mean peak 

intensity of the extracted sounds was 70.5 dB, with a 

low standard deviation across participants (1.92 dB) 

indicating a relatively consistent intensity level across 

the recording sessions. Inspecting the spectrum and 

the closest zero crossings, the start and end of the 

target sequences were labelled in PRAAT [11]. Only 

sequences that were produced without an audible 

breath or a large pause were selected. In the case of 

multiple good productions, the sequences with the 

most repetitions of the target syllable were selected. 

The resulting annotated speech signals were imported 

in MATLAB, resampled to 16 kHz, and pre-

emphasized to account for the high-frequency roll-off 

of the glottal source. Speech spectra were generated 

using 25 ms windows with 2 ms steps between 

samples. Frequencies between 300 and 4000 Hz were 

considered for Mel-frequency cepstral coefficients 

(MFCC) analysis. 20 Mel-frequency filter banks 

processed these spectra to emphasize the 

characteristics of the human ear [12]. 15 MFCCs were 

then extracted by log-transforming the resulting 

spectral values and applying a discrete cosine 

transformation.  

The first coefficient reflects the average spectral 

energy, containing source information, and was 

analysed to quantify speech amplitude changes. To 

capture articulatory changes over time, the first 

differential of each of the remaining MFCCs (2-15) 

was computed, and these values were summed at each 

time point. This resulted in a trajectory with “spectral 

energy difference” values with peaks indicating large 

changes in energy (e.g., changes from [o] to [j] and 

[j] to [o]) and valleys indicating small changes in 

energy (e.g., during the steady states of vocoids; see 

Figure 1). These changes in spectral energy are highly 

correlated with vocal tract shape changes, which 

indirectly represent articulatory movement patterns 

[8]. Consequently, the magnitude of spectral energy 

changes indicates the speed of articulatory motions 

(i.e., from [o] to [j] and vice versa) and variability in 

these changes relates to consistency in articulatory 

movements. Temporal distances between maxima 

and minima reflect articulatory timing patterns, from 

which timing variability can be extracted. In total, 15  

measures were extracted from the trajectories (Table 

1 and Figure 1 and 2). 
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Figure 1: Diadochokinetic speech sample. Top: the sum 

of the first differential of MFCC 2-15 over time, 

reflecting a global metric of spectral change related to 

supra-laryngeal articulation. Bottom: time-aligned speech 

spectrogram. 

Figure 2: Temporal and articulatory parameters extracted 

from the spectral energy difference signal in Figure 1 

(appr. 200 to 420 ms). See Table 1 for details. 

2.4 Data processing and clustering algorithms 

To determine the relevant principal components for 

the cluster analysis, the matrix containing the raw 

acoustic parameter values for each participant was 

normalized by centering and z-scoring each 

parameter. Resulting values for the 15 extracted 

parameters were transformed into three principal 

components (PCs), using the PCA algorithm in 

MATLAB (see 3. RESULTS). The output loadings 

were further rotated with ROTATEFACTORS on 

these three PCs, with a standard varimax rotation. The 

three PCs served as input for the unsupervised 

clustering process. 

To assess the reliability of our results, two 

separate clustering algorithms were used: k-Means 

clustering, which assumes equal variances across 

dimensions and groups (KMEANS in MATLAB) and 

the Expectation-Maximization (EM) algorithm for 

Gaussian Mixture models, allowing variances to 

differ [15]. Potential clusters were generated using 

each algorithm for one to seven groups (inclusive). 

The optimal number of clusters was then determined 

using the Calinski-Harabasz criterion [13] with 

EVALCLUSTERS. Because unsupervised clustering 

often identifies local, rather than global minima, and 

thus has the potential to yield different results across 

iterations depending on initial conditions, this process 

was repeated 3000 times for each clustering 

algorithm. 

Amplitude descriptor 

1 Amplitude coefficient of variation of the first MFCC 

(the standard deviation divided by the mean). 

 
Temporal descriptors 

2 Duration from valley (i.e., steady state) to following 

peak (transition from [o] to [j] and vice versa): large 

values indicate slower vocal shape changes.  

3 The standard deviation of these durations. 

4 Duration from peaks to following valleys. 

5 The standard deviation of these durations. 

6 Duration from valleys to valleys. 

7 The standard deviation of these durations. 

8 The total sequence duration. 

  
Articulatory descriptors 

9 The magnitude of the difference between valleys and 

following peaks (analogous to the speed of vocal tract 

shape changes from steady state (valley; no vocal tract 

shape change) to peak (fast vocal tract shape change 

from [o] to [j]). 

10 Standard deviation of these differences. 

11 The magnitude of the difference between peaks and 

following valleys (analogous to the rate of vocal tract 

shape (peak) compared to steady state (valley). 

12 The standard deviation of these differences. 

13 The mean of all the values of spectral energy changes 

across the full sequence. 

14 The standard deviation of these magnitudes 

15 Number of peak-to-peak cycles in sequence. 

Table 1: Temporal and articulatory parameters 

extracted from the spectral energy difference signal. 

3. RESULTS 

Observing the eigenvalues of the PCA, only three 

factors were retained, as after the third dimension the 

curve tapered off. The three dimensions together 

explained the 86% of the variance: 40%, 32%, and 

14% for the first, second and third PCs respectively. 

The first PC weighted heavily towards the 

articulatory descriptors, the second PC towards the 

temporal descriptors, and the third towards the total 

sequence duration, number of syllable repetitions, 

and variation in speech amplitude (see Table 2). 

Using these PCs, the EM clustering analysis 

identified two to three clusters (46% and 37% of the 

iterations respectively), while the k-Means analysis 

more consistently identified three clusters (76% of the 

iterations). 
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   PC 1 PC 2 PC 3 

1 COV first MFCC -0.11 0.09 0.25 

Temporal descriptors 

2 M valley-peak  0.08 0.41 -0.10 

3 SD #2 -0.03 0.37 0.16 

4 M peak-valley  0.04 0.42 -0.10 

5 SD #4 -0.08 0.35 0.20 

6 M valley-valley 0.05 0.44 -0.11 

7 SD #6 -0.05 0.40 0.13 

8 Total duration 0.09 -0.01 0.62 

Articulatory descriptors 

9 M valley to peak  0.41 0.01 -0.09 

10 SD #9 0.39 0.05 0.08 

11 M peak to valley 0.41 0.01 -0.09 

12 SD #11 0.39 0.06 0.06 

13 Mean contour 0.38 -0.11 -0.04 

14 SD #13 0.41 -0.01 0.03 

15 # peaks 0.06 -0.11 0.64 

Table 2. Columns show loadings for each PC after 

Varimax rotation. Loadings with values equal or 

higher than 0.25 are shown in bold. 

Figure 3. Clusters of speakers as grouped by EM (upper) 

and k-Means (lower) algorithms. 

Several patterns can be observed (see Figure 3). 

For the k-Means algorithm, first and second PCs 

separated all three clusters efficiently; the first PC 

distinguishes between one group of two clusters 

(round (red) and squared (blue) dots) and a third 

group (diamond (green) dots), while the second and 

PC distinguishes between the red and blue groups. 

For the EM algorithm, the three clusters are less 

clearly distinguished by any single pair of PCs. 

4. DISCUSSION 

This study explored whether an unsupervised cluster 

analysis of diodochokinetic speech detected potential 

subgroups of dysarthria in speakers with 

spinocerebellar ataxia, without a priori knowledge 

about clinical diagnoses. The study showed that k-

Means and, to a lesser extent EM, identified distinct 

clusters of speakers. Subgroups were distinguished 

along dimensions consistent with the first three PCs, 

representing articulatory features, temporal features, 

and utterance length/number of peaks/amplitude 

variation, respectively. These results are consistent 

with the notion that distinct subtypes of ataxic 

dysarthria exist [4-7] and can be distinguished based 

on unique clusters of symptoms. Observing the PC 

loading factors suggests that including supra-

laryngeal parameters helps to distinguish these 

groups, in addition to the temporal and phonatory 

features employed in [4]. The emergence of three 

clusters is promising – an average of 3.9 clusters were 

recognized perceptually for diadochokinetic speech 

by naïve listeners in [7]; subsequent hierarchical 

clustering analyses extracted two main clusters from 

these data, which mapped onto the “inflexibility”- 

“instability” distinction. Future work will explore the 

extent to which the clusters detected with 

unsupervised learning in our study align with clinical 

diagnoses of inflexibility and instability. 

Despite the promising results, the identified 

clusters do show overlap in some PCs; a part of the 

population likely shares characteristics of both 

subgroups and are thus not likely to form well-

separated clusters [5]. With a larger sample, we 

expect that the groups will become more well-

defined. A larger sample may enable us to determine 

the extent to which these clusters relate to different 

subtypes of spinocerebellar ataxia as well as other 

causes of ataxic dysarthria. 

One potential methodological issue with the 

current study is that the material consisted of home 

recordings; the quality of the recordings is lower than 

in the lab and less consistent between participants, 

which influences the subsequent MFCC analysis [19, 

20]. The data should thus be interpreted with caution, 

especially regarding the first parameter, intensity 

[19], which has been shown to be unstable with, 

especially, older versions of Zoom, and should be 

validated with material collected in the lab. That said, 

our results suggest well-defined groups even with 

possible distortions of the acoustic signal. 

Importantly, the ability to record speakers with rare 

disorders online provides a substantially larger 

sample size than would otherwise be available.  

In sum, unsupervised clustering based on 

parameters extracted from energy changes over time 

is a promising approach in distinguishing dysarthria 

subgroups in ataxia. Though the extent to which the 

identified groups reflect the inflexibility-stability 

dichotomy remains to be tested, this method has 

potential to complement or replace perceptual 

assessments of different subtypes of ataxic dysarthria 

in clinical settings. 
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