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ABSTRACT 

 

The computer program VoiceSauce was applied to a 

set of authentic telephone-based forensic recordings 

in order to examine the speaker-discriminatory 

potential of the acoustic voice quality information 

extracted with the program. Several conditions were 

tested, including variation on the input audio (all-

vocalic vs. /a/-based) and the option of uploading 

hand-corrected formant and f0 streams. Among the 

voice quality parameters investigated, CPP (cepstral 

peak prominence) turned out to be the most speaker-

distinguishing one, yet it stayed behind formant 

frequencies when used as baseline parameter. Judged 

from the performance indices EER and Cllr, speaker 

discrimination for the forensic data analysed with 

VoiceSauce remained quite limited. Multivariate 

models with several voice quality parameters, as well 

as logistic regression fusion, did not improve 

performance over the use of single parameters. 

 

Keywords: forensic voice comparison, laryngeal 

voice quality, VoiceSauce 

1. INTRODUCTION 

Voice quality is a feature complex widely used in 

forensic phonetics [1]. Most commonly, forensic 

voice quality is judged auditorily [2, 3]. The focus of 

this paper is on laryngeal voice quality, also known 

as phonation type, as opposed to supralaryngeal voice 

quality also referred to as articulatory settings; 

henceforth “voice quality” will be used in the narrow 

sense of phonation type. Due to limitations in the 

intra- and interrater reliability of auditory voice 

quality ratings [4], being able to measure voice 

quality acoustically would be an advantage. There has 

been scepticism, however, that most acoustic voice 

quality measurements might not very well survive the 

telephone-passband or other forms of signal 

degradation typical in forensics [2]. Confirming such 

reservations, Enzinger et al. [5], using software called 

Glottex, found a speaker discrimination reduction in 

telephone-transmitted speech as compared to high-

quality speech. However, Hughes et al. [6], using 

VoiceSauce [7], presented more mixed results, and 

especially with harmonic amplitude parameters there 

was little difference between studio and telephone 

quality, even when signal quality was further reduced 

within the latter category.  

The main goal of this study is to explore further to 

which extent the program VoiceSauce can provide 

speaker-discriminatory information when applied to 

forensically realistic recordings. Though the focus of 

this study is on this program, there is an interest in 

forensic-phonetic acoustic voice quality research 

more generally. 

2. METHOD 

2.1. Forensic recordings 

This study is based on a speech corpus called GFS 2.0 

(German Forensic Speech). The corpus contains two 

recordings each of 23 male adult speakers of German. 

These recordings derive from anonymized authentic 

forensic cases involving telephone conversations 

(converted into PCM wav files sampled at 16 bit, 8 

kHz). Single recordings from additional 25 speakers 

were used for the UBM (Universal Background 

Model), addressed in section 2.4. This corpus was 

also used in [8, 9]; the specific version applied is the 

one of [9], in which one of the 23 speakers was not 

included due to difficulties in measuring formant 

structure. Signal quality is on average lower than in 

non-forensic telephone recordings. In terms speech 

style, sections of speech with increased vocal effort 

or emotional involvement are included, but severe 

levels of signal distortion or non-neutral speech style 

were avoided in the compilation of the corpus. Net 

duration of the recordings is between about 20 and 60 

seconds. 

2.2. Audio data preparation 

The measurements with VoiceSauce are based on 

vowel-only speech material. In some of the voice 

comparison tests (test condition design summarized 

in Table 1) the material used was the same as in [9], 

where for the purpose of long-term formant analysis 

(LTF) each recording was cut down manually to a 10-

seconds long stream that contained only vowels with 

visible F1, F2 and F3. This condition will be called 

“LTF”. 

In other tests only the vowel /a/ was included in 

the stream. Depending on the number and lengths of 
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a-tokens in the recordings, the duration of the a-

stream differs between recordings from between 

about 1.5 to 4 seconds. Tokens of /a/, regardless of 

phonological context, were identified based on 

listening from roughly sentence-level context, but 

when listening to the selected tokens in isolation, they 

had a broader range of mid-to-low vowel qualities. 

This condition is referred to as “a-tokens”. 

In both the LTF- and the a-token-data, cutting 

passages out of the recordings resulted in abrupt 

transitions between the remaining segments. In the 

spectrogram, these cuts may be visible as very short 

transients across the frequency range. During the 

brief moments of these transients, spectral tilt is 

radically reduced. Since spectral tilt is among the 

parameters measured with VoiceSauce, results could 

be affected negatively by the existence of these 

transients. To investigate that possibility, a subset of 

the a-token data was processed in a way that hard cuts 

were eliminated. This was performed by writing a 

Praat script that carried out the following steps for 

each of the a-tokens audio files: The a-tokens had 

been labelled in Praat. For each of the labelled tokens 

per audio file, the first zero crossing was identified 

and the signal from the beginning of the labelled 

segment to that zero crossing was muted. The same 

procedure was applied in the right-to-left direction of 

the segment. Subsequently all the segments per file 

were concatenated. The condition using data 

processed in this manner is called “a-tokens-zero”. 

2.3. VoiceSauce analysis 

The program VoiceSauce (accessed August 8, 2022 

from www.phonetics.ucla.edu/voicesauce) with 

compiled Matlab executables for Windows was used 

to analyse the audio data described in 2.2. Out of the 

voice source parameters offered by the program, the 

following set was used for analysis (see the program 

manual for their definition): H1*-H2*, H2*-H4*, 

H1*-A1*, H1*-A2*, H1*-A3*, H4*-H2K*, H2K*-

H5K, CPP, HNR05, HNR15, HNR25, HNR35. For 

reasons explained below, the parameter H2K* was 

added as well. VoiceSauce requires good estimation 

of formant frequencies and fundamental frequency in 

order to find the spectral events necessary for 

measurement of the voice source parameters. The 

Snack algorithm was selected for formant analysis 

and Praat for f0-analysis. Snack was selected due to 

compatibility with Wavesurfer [10], used in the LTF 

study in [9]. Praat was preferred over other f0-

algorithms based on relative success (frequency and 

severity of f0 outlier values as criterion) on a subset 

of the data. Parameter defaults were used, except for 

frame shift, which was set to ten milliseconds instead 

of one, and Max F0 in Praat, which was set to 250 Hz.  

Instead of automatic f0 and formant estimation, 

VoiceSauce also offers the option of manual data 

input. This option was used for some of the voice 

comparison test conditions. It allows the user to 

upload files containing hand-measured or manually 

corrected formant- or f0-value streams into the 

software, and in that case the uploaded values will be 

used for subsequent voice quality parameter 

extraction instead of the automatically measured f0 

and formant values. In some test conditions only 

formants were uploaded. The formant values were 

taken from the formant measurements of [9] 

performed with Wavesurfer. Alignment across 

VoiceSauce parameters was ensured by taking the 

automatically calculated formant values and 

temporally aligning them with the uploaded formant 

values, after which only the uploaded values were 

used in the analysis. Maximum alignment was 

achieved by using a value of 2 for the data offset 

parameter in VoiceSauce. F1 was rarely in need of 

correction, therefore formant upload was limited to 

F2 and F3. In another test condition both hand-

corrected formants and f0-values were uploaded. 

Uploaded f0-values were measured and corrected in 

Wavesurfer. Alignment was again achieved with a 

data offset value of 2. Pre-analysis showed that 

VoiceSauce-measured formants (F2 and F3) were 

more error prone with the data used here than f0. This 

is the reason why only in one test condition f0 data 

were uploaded in addition to formant data. 

Table 1 shows the test conditions of this study. 

The term test means that questioned-speaker 

recordings from 22 speakers are compared against 

suspect recordings from the same 22 speakers, 

yielding 462 different-speaker comparisons and 22 

same-speaker comparisons. Within a test condition 

the test is repeated several times while varying the 

voice quality parameter and the use or non-use of 

MAP, as well as two values for the number of 

Gaussians, all explained in 2.4. 

 

Cond. Audio Upload (manual 

data input) 

1 LTF - 

2 LTF F2, F3 

3 LTF F2, F3, f0 

4 a-tokens - 

5 a-tokens F2, F3 

6 a-tokens-zero - 

 
Table 1: Test conditions used in this study. 

2.4. Forensic-phonetic analysis 

For each test as defined in 2.3, each of the 484 

comparisons resulted in a score by using the GMM-
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UBM approach. This approach was originally 

developed for automatic speaker recognition [11] and 

was adapted to the analysis of acoustic-phonetic data 

by Becker et al. [12]. In the current study the software 

VOCALISE version 1.6 [13] was used. The software 

accepts the frame-by-frame output generated by 

VoiceSauce for each of the voice quality parameters. 

This stream of values is modelled as a Gaussian 

Mixture Model (GMM) for the suspect recording and 

the 25-speaker set representing the UBM. The 

questioned-speaker values are not modelled in that 

manner, but instead they are evaluated frame-by-

frame against the GMM of the suspect and the UBM, 

technically resulting in a Likelihood Ratio. These 

results are averaged across the frames. Further details 

about GMM-UBM analysis as applied here are the 

same as in [9]. 

In the tests, one of the parameters varied is the 

number of Gaussians for the GMM. In [9] the value 

of 17 was used. In pre-analyses it was tested whether 

this is a viable value for the current data. This value 

was accepted and a lower value of 3 was selected as 

well, because analysis of acoustic-phonetic data, 

formants in particular, tend to saturate at lower values 

of Gaussians as far as speaker-discrimination 

performance is concerned [12, 14]. The other 

parameter varied is the inclusion or exclusion of MAP 

(Maximum a posteriori) adaptation [9, 11]. One of the 

goals of MAP adaptation is to provide a more stable 

suspect model in case of insufficient suspect data. 

This might be relevant here with the a-tokens in 

particular. 

For each individual voice quality parameter 

speaker discrimination performance was measured 

with EER (Equal Error Rate, using the convex hull 

method) and Cllr (log-likelihood-ratio cost) [15]. For 

the comparisons reported with Cllr, prior calibration 

was performed using cross validation logistic 

regression calibration [16].  

Further analyses were made by grouping several 

parameters. In combination tests, the parameters of 

the group were included in a multivariate model, 

which is a regular option with the GMM-UBM 

approach. In fusion tests, the parameters were fused 

using logistic regression fusion [16]. Three sets of 

parameters were grouped for this purpose. The first 

group consists of all parameters using relative 

harmonic amplitudes (except, H2K*-H5K, which, as 

will be explained, is replaced by H2K*), the second 

one consists of those targeting spectral noise (CPP 

and HNR), and the third group consists of all 

parameters contained in the previous two groups. For 

the combination results Cllr is reported after 

calibration, for the fusion results Cllr is reported 

directly because fusion has a calibrating effect. For 

the functions described in this paragraph and the 

preceding one, the software BIO-METRICS was used 

[17].  

3. RESULTS 

Results are reported in two ways. First, numerical 

detail is presented for Condition 2. Secondly, in a 

more descriptive manner, patterns are pointed out that 

are similar or different between Condition 2 and the 

other five ones. A full report of all numerical results 

across conditions is made available at 

www.researchgate.net/profile/Michael-Jessen-2. 

 

 
 

Figure 1: EER (bars; left vertical axis) and Cllr (lines; 

right) in Condition 2 for harmonic amplitude parameters. 
 

 
 

Figure 2: EER and Cllr in Condition 2 
for spectral noise parameters, combination and fusion 

across all voice quality parameters, f0 and formant 

frequencies F1, F2 and F3. 
 

For test condition 2 (see Table 1), Figs. 1 and 2 show 

the EER results (bars) and the Cllr results (lines) in 

the following four test variations (bars from left to 

right; same colours/greyscales for lines): no MAP, 3 

Gaussians; no MAP, 17 Gaussians; MAP, 3 

Gaussians; MAP, 17 Gaussians. Lower values 

indicate better performance. EER (in percent) of 50 

and Cllr of 1 are at chance level. Looking at EER, the 

four test variations have an impact on the results, but 

there are no systematic performance differences. 

There are some differences between the voice quality 

parameters however. Among the harmonic amplitude 

parameters (Fig. 1), the best performance of single 
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parameters is with H2K*-H5K. Paradoxically, this is 

a parameter that should bear little meaning since the 

sampling rate of the recordings was 8 kHz and 

therefore 5 kHz is not represented. Could this result 

be driven by the component H2K*? In order to 

investigate this question, this parameter was included. 

Fig. 2 indeed shows that H2K*, although it is not a 

relative amplitude measurement (subtraction), is 

among the better-performing parameters, but it is not 

as good as H2K*-H5K (although in Conds. 4 and 6 it 

is slightly better). This has to remain an open issue. 

Applying multivariate processing or fusion to all 

harmonic amplitude parameters (excluding H2K*-

H5K due to its questioned validity) leads to no 

particular performance advantage over single 

parameters. Among the spectral noise parameters 

(included in Fig. 2), a striking result is that CPP has 

the best performance. It is surpassed only by F3, 

which along with f0, F1 and F2 was included for 

comparison purposes with more familiar forensic-

phonetic parameters as baseline. Fusing spectral noise 

parameters or applying a multivariate model did not 

improve upon CPP. The same holds for fusion and 

multivariate models across all parameters (but H2K*-

H5K), except for fusion in one of the four variations. 

That particular fusion advantage, however, is not 

paralleled by Cllr. There was also an exception with 

Cond. 3, where noise-based or overall fusion slightly 

improved upon CPP. 

Turning to the Cllr results, they roughly mirror the 

EER results. For example, Cllr is relatively low with 

CPP and still lower with F3, just like EER. There are 

some differences in detail however. In a few cases 

Cllr is massively out of scale. This is due to outliers 

in the scores, which Cllr is sensitive to but EER is not. 

The outliers occur in one of the two variations that 

make no use of MAP. MAP has the effect of 

preventing such extreme scores. Outlier values that 

occur without MAP were further negatively enhanced 

by cross validation calibration. 

When comparing the voice quality results from 

Cond. 2 to the results from the other conditions 

mentioned in Table 1 (not shown, but provided 

through link), no major differences occur. It is not the 

case that single methodological steps such as 

uploading formants as opposed to fully automatic 

processing or removal of transients left any clear 

marks on the results. Most remarkable is the lack of 

any major difference between the conditions using 

10-seconds LTF data and those using much shorter 

/a/-vowel data. Although there is a tendency for 

results to be better in the LTF data, this effect is quite 

small. Absence of a clear difference could mean that 

the extraction of the relevant information can be 

achieved with very short vocalic material, or it could 

mean that there is a trading relation in which the 

advantage for voice quality analysis of limiting the 

analysed material to the mid-to-low range of the 

vowel space [cf. 18, 19] can be traded against the 

advantage of increased duration of the vocalic input. 

Interestingly, formants (F2 and F3) suffer more in 

performance when switching from LTF to a-vowels 

than voice quality (shown in the link-provided data). 

4. DISCUSSION  

Speaker discrimination studies with VoiceSauce or 

related methods have been conducted predominantly 

on the basis of microphone-quality speech. Examples 

of such studies, with promising results, include [20-

23]. There is less work on telephone-based or 

otherwise signal-degraded speech. A previous study 

that is of particular relevance to the present research 

is Hughes et al. [6].  

VoiceSauce measurements on the forensic speech 

corpus GFS 2.0 have resulted in speaker 

discrimination performance that is quite limited. EER 

most of the time turned out to be in the range of 30 to 

40% and only the parameter CPP showed better 

performance, reaching down into the 25-30% range. 

This is close to the performance of some formants 

based on the same material, though F3 has better 

performance still. Cllr was never below 0.8 even with 

CPP, and sometimes it was around chance level. 

Hughes et al. [6] in their telephone conditions 

differing in landline/mobile status and quality 

reported better values. For their multivariate models 

that correspond closely to “multiv-noise” and 

“multiv-hrm” in Figs. 1 and 2, they on average 

reported EER of about 20% and Cllr of between 0.7 

and 0.9 for the former and for the latter EER of about 

15% and Cllr slightly below 0.6. This is better 

performance than found here, especially for the 

harmonic amplitude parameters, which is contrary to 

the present results, where additive noise was better- 

performing than harmonic amplitude (probably CPP 

dominated in the multivariate model, so it really 

narrows down to that single additive noise 

parameter). Possible reasons for the performance 

difference between [6] and this study, respectively, 

include: telephone-transmission mostly simulated 

from microphone data vs. original telephone-

recordings; fixed vs. varying signal quality across 

recordings; 60 seconds vs. 10 seconds vowels or less 

(a-tokens); contemporaneous speech vs. non-

contemporaneous speech. 

With more in-depth scrutiny of the extraction 

process it could be investigated further whether the 

limitations observed in this study are intrinsic to the 

forensic audio material or whether they result from 

difficulties of the algorithms to detect the relevant 

spectral events. 
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