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ABSTRACT

As commercial prevalence of high-quality TTS
voices continues to grow, little is known about
their suitability for speech sciences. In this
paper, we compare feature importance in obstruent
place classification between natural voice, and two
TTS systems: Tacotron WaveNet and Tacotron
WaveGAN. Support Vector Machines (SVMs) are
used for classification, using 20 acoustic-phonetic
features. First, individual feature strength was
evaluated by passing each feature individually to
the SVMs. Then, classification was made using the
full 20 featureset, to test the most high performing
feature combination.

Top-ranked predictors in natural voice were
compared with each of the Tacotron voices. We
find that Tacotron voices greatly resemble natural in
contrasts involving sibilant fricatives w.r.t similarity
with high-performing features. But in non-sibilant
fricatives, we find greater dissimilarity between
natural and Tacotron voices.

Keywords: obstruents, Tacotron, WaveNet,
WaveGAN, support-vector-machines

1. INTRODUCTION

In days of formant synthesis, speech science
and synthesis technology enjoyed a reciprocal
relationship. However, synthetic speech thus
produced was more unintelligible than human
speech, and its findings often did not extend
to human language [1]. Although intelligibility
improved with statistical parametric synthesis, it
brought a roboticity or “unnaturalness" to the
speech output [2]. But today, with neural Text-
To-Speech (TTS), high-quality, natural-sounding
synthetic speech has become quite accessible.
Malisz et al. [3] show that data-driven TTS is now
more realistic, highly intelligible, and perceptually
closer to human speech. They argue that conclusions
drawn on speech produced by modern TTS may

generalize better to the human voice. It may thus
be time, once again, for a closer exchange between
speech science and synthesis technology.

Using synthetic speech as a research tool
has attracted many phoneticians. Vector space
embeddings in WaveNet synthesizers have been
used to analyze prosodic patterns in Lombard
speech, proposing new methodologies for prosodic
research [4]. Controllable architectures like
WaveBender [5] have reinstated the scope of feature-
based phonetics within modern TTS. Additionally,
using conversational synthetic speech has provided
greater flexibility over controlled variation in
determining paralinguistic characteristics [6].
Speech science has also increasingly contributed
to TTS. Forensic investigation of speech spoofed
through TTS provided important insights into
human-likeness [7]. Segmental analysis of
obstruents using acoustic-phonetic features in
[8], have revealed system-specific weaknesses in
WaveNet TTS. Furthermore, evaluation paradigms
have borrowed actively from phonetics [9].

However, the majority of these papers involve
prosodic explorations of synthetic speech.
Phonemic contrast, which took centre stage in
early formant synthesizers, has been overlooked
in neural TTS. If contrastive trends in synthetic
speech can generalize well to human speech,
dependence on data collection can be immensely
reduced. Phonemic contrasts could be synthesized
in various positional, vocalic and cluster contexts,
including speaking styles. Additionally, the success
of multi-speaker, and accented TTS [10] can ensure
the necessary diversity required to understand
acoustic invariance.

To investigate whether phonemic contrast is
maintained in neural TTS in the same way as
in a human voice, this paper provides place
classification of English fricatives as a targeted
test case. Recently, voiceless fricatives have been
shown to deviate from a natural voice in neural
TTS [8]. However, despite deviation, if contrast
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is encoded in the same parameters as in the
natural voice, then TTS voices may be suitable
tools for speech science research. Conversely, if
phonemic contrast is indexed by divergent trends in
TTS voices, then generalization may become more
difficult. Additionally, unexpected acoustic detail
may enforce a cognitive load condition and increase
reliance on lexical cues [11]. This can cause greater
problems for non-native listeners [12].

We compare feature importance for place
classification between a natural voice, and two
TTS systems: Tacotron WaveGAN and Tacotron
WaveNet. The corpus for our analysis comes from
the recently extended Blizzard Challenge 2013 (BC-
2013) [13]. Features are analyzed both individually
and as an ensemble, using Support Vector Machines
(SVM)s for place classification between contrastive
pairs (e.g, /s-S/). Top-ranked features in each
contrastive pair are compared. Through this
analysis, we explore whether contrastive trends in
Tacotron voices are similar to the natural voice in
terms of top-ranked features. We find that sibilant
fricatives in both the voices show very similar trends
to the natural voice, while non-sibilant fricatives
need further exploration.

2. EXPERIMENTAL SETUP

2.1. Dataset and features

2.1.1. Description of the dataset

The Blizzard Challenge 2013 [14] provides single-
speaker read-speech data, collected from a female
speaker of standard American English. Recently,
the original 2013 challenge was extended [13]
to include modernTTS voices. For the present
analysis, we selected Tacotron WaveGAN (system
R) , Tacotron WaveNet (system Z), and the natural
voice. While both systems use Tacotron [15] as
the acoustic model, waveform generation is handled
by WaveGAN [16] and WaveNet [17]. With this
dataset of a 100 sentences produced by each of
the three voices (300 sentences total), we analyzed
place classification in the following contrastive pairs
of fricatives (voiceless:/f-T/, /T-s/, /s-S/, voiced:/f-
D/, /D-z/). Obstruents occuring in unstressed and
consonant cluster positions were removed, hence the
voiced sibilants /z-Z/ were excluded.

2.1.2. Feature extraction

A set of acoustic-phonetic features were extracted
from these obstruent consonants in natural and each
of the Tacotron voices. In English fricatives, place is

determined largely by static spectral characteristics
such as spectral tilt, shape, center frequency [18,
19]. Formant transitions have also frequently been
discussed [20], although with inconsistent findings.

From the vocalic portion of the CV syllable, we
extracted: vowel duration; vocalic RMS amplitude;
Formant values (F1-F3) at onset and midpoint;
relative amplitude of F3; vocalic spectral tilt and
Delta F1-F3.

From the consonantal portion of the syllable,
we extracted: consonant duration; noise duration;
RMS amplitude; spectral tilt; spectral shape; peak
frequency; peak amplitude; and dynamic amplitude.
All these features have been compared across all
English obstruents in [21] for various contrastive
strength. They have also been used in analysing
obstruents of WaveNet vocoders in [8].

2.2. Feature importance: individual and ensemble

Feature importance provides important links
between speech stimuli and phonemic perception.
Feature importance was analyzed in R using
a two-pronged SVM based classification, and
complemented with statistical analysis. This
approach is greatly inspired by Styler’s [22] work
on nasality feature analysis. All features were pre-
processed by median-normalization and scaling,
and imbalances are removed by undersampling the
abundant phonemic class. SVMs use a 5-fold cross
validation, and a radial-basis kernel throughout.

2.2.1. Single-feature model (SF model)

In this step, place classification is performed using
only 1 feature at a time. This reveals the independent
predictive capacity of the predictor, before it is cast
into a high-dimensional space.

Feature importance is calculated simply by
checking the accuracies as returned by each
feature. Next, in addition to accuracy, top-ranked
features identified above were also checked for
their statistical signficance in the dataset, using the
Kruskal-Wallis rank sum test. If complementary
information is provided by both the dataset and
SVM, then it is crucial for the feature to be properly
reproduced in Tacotron voices.

Similarity between natural and Tacotron
voices is manually compared, using predictor
accuracies, statistical significance scores, and
median differences between phonemes.
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2.2.2. Full-feature ensemble model (FF model)

In this step, we provide all 20 features to the SVM
as an ensemble. This resembles real-world scenarios
of speech perception, where all the contrastive
information is available to the listener. This step
investigates whether the same feature combination
is shared between natural and Tacotron voices.

First, we calculate the accuracies and F1 score for
each contrastive pair, for natural and both Tacotron
voices. Then, feature importance is obtained using
the DALEX [23] library, which ranks features based
on the 1-AUC score. Thus, we obtain the top 7
(1/3rd of 20) most performant features for every
contrastive pair in natural and Tacotron voices.
Next, we compute a similarity score based on
the Sørensen‘s-Dice coefficient. This calculates
the magnitude of overlap among the top-7 features
between natural voice and each Tacotron system. A
high-score indicates greater overlap between high-
performing feature combinations.

3. RESULTS

Figure 1: Relationship between accuracy and
feature similarity with natural voice. Labels for
contrastive pair presented for Tacotron WaveGAN
(R) and Tacotron WaveNet (Z). Dashed lines show
medians on every axis.

In this section, we present the results of place
classification in sibilants, between sibilant-non-
sibilants, and between non-sibilants. First, we report
single-feature accuracies and statistical significance
of top-ranked features in each voice using the SF
model. These values are presented comparatively

between natural and each Tacotron voice. Then,
using the FF model, we report the accuracies of
place classification, and similarity between top-7
features of natural and each Tacotron voice. Figure
1 displays the relationship similarity and accuracy
obtained using the FF model.

3.1. Within-sibilants

Voiceless /s-S/: In sibilant place identification, both
systems Z and R show remarkable similarity to
natural voice. Through the single-feature analysis,
we find spectral shape to be the most powerful
predictor of sibilant place, with its standalone
accuracy reaching 100% in natural voice, as well
as in both the synthetic voices . In natural voice,
the spectral shape of /S/ is higher by +14.12 dB
compared to /s/, [χ2(1) = 86.26, p-val < 0.0001].
The distinction of higher spectral shape in /S/
is consistently maintained in system Z (median
difference +13.29 dB), and in R by +12.83 dB
respectively. This means that spectral shape is a
robust indicator of within-sibilant place in natural
voice, and gains a similar prominence in synthetic
voices as well.

Using the FF model, we find near-perfect
accuracy for place classification between sibilant
fricatives. Figure 1 shows their clusters in the
top-right quadrant, displaying high similarity with
natural, as well as above-median accuracy. System Z
scores 0.99, and R 0.71, on the Sørensen‘s distance
metric. This indicates a very strong match in the
features selected by the natural voice, and those by
both the Tacotron systems.

Therefore, in addition to spectral shape, other
high-performing features are also consistent in
natural as well as synthetic voices for place
identification in sibilants.

3.2. Sibilant vs non-sibilant

Voiceless /T-s/: Here, both Tacotron voices show
high accuracy of classification, but share only a
few features with natural voice. Through a single-
feature analysis, we find a source of divergence
between systems on the basis of spectral tilt. In
Tacotron voices consonantal spectral tilt shows high
standalone accuracy [Accuracy = 100%, χ2(1) =
8.75, p-val < 0.0001]. In natural voice, although
spectral tilt for /s/ is significantly higher (p-val <
0.001), it is a weak predictor for SVM, with only
55% individual accuracy. Using the FF model,
system Z shows a 100% accuracy, with Sørensen‘s
score of only 0.43. This means that the feature
combination is not similar to natural, but a divergent
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model gives comparable accuracy of classification.
Therefore, features in /T-s/ place identification are

more divergent from the natural voice, compared
to within-sibilant place identification. However,
significantly higher spectral tilts in /s/ means that the
synthetic data, at least, preserves contrastive trends
like the natural voice.

Voiced /D-z/: For the voiced sibilant-non-sibilant
contrast /D-z/, we see that Tacotron voices show
greater similarity with natural in terms of features.
Through a single feature analysis, we find that
consonantal spectral tilt, dynamic amplitude and
peak amplitude are robust across natural voice, as
well as both the Tacotron voices. Here, dynamic
amplitude between /D/ and /z/ show statistically
significant differences, [χ2(1) = 12.79, p-val <
0.001], with median dynamic amplitude of /z/ being
+30.5 dB higher than T. Comparable trends can
be seen in Tacotron voices as well. Next, a high
Sørensen‘s score of 0.71 and 0.57 in systems Z and
R, indicate a majority of features in the full-model
SVM are shared with natural.

Therefore, we can see that place classification
between voiced sibilant-non-sibilant pair /D-z/
shares great similarity with natural.

3.3. Within non-sibilants

Voiceless /f-T/: For this contrast, we can see very
divergent trends. Figure 1 displays them in the
bottom-left quadrant, indicating a low similarity
with natural, as well as below-median accuracy.
Next, we find that the contrast is very weak
and confusable in natural voice, with only a few
features showing modest statistical differences (p-
val < 0.01). An SF model reveals consonantal RMS
amplitude as the strongest predictor in natural voice
[Accuracy 75%, p-val = ns]. On the other hand, both
the Tacotron voices show high standalone accuracies
for noise duration (System Z: [Accuracy 75%, χ2(1)
= 10.30, p-val < 0.01], System R: [Accuracy 80%,
χ2(1) = 9.08, p-val < 0.01]), which is conspicuously
absent as a high-ranking feature in natural voice.

Using the FF model, we find that accuracy
in natural voice is only 55%. This means that
accuracy drops for natural when more features are
added, and feature selection must be much more
careful. Conversely, in Tacotron voices, accuracies
are higher than chance in the FF model, even though
it is lower than median.This means that features
selected by SVM for /f-T/ are different from natural.

Voiced /v-D/: Similarly in the voiced condition,
both Tacotron voices show a low Sørensen‘s score,
indicating only a minimal overlap with natural voice
in the full-model SVM. As observed in the voiceless

condition, noise duration is an important predictor
of place in Tacotron voices [Accuracy 70%, χ2(1) =
3.28, p-val > 0.05] in system Z, and [Accuracy 70%,
χ2(1) = 3.28, ns] in system R.

Therefore, in place identification between non-
sibilants, i.e, /f-T/, and /v-D/, we see strongly
divergent trends from natural voice in terms of
feature importance, and classification results. So, a
much deeper exploration is needed before their use
can be recommended for speech sciences.

4. DISCUSSION & CONCLUSION

In this paper, we compared feature importance
in place classification of obstruents between a
natural voice and two Tacotron voices. Using a
single-feature SVM model, we compared individual
predictors that were most informative in each
voice. Then, using a full-feature model in
SVM, we compared feature importance between
the voices using a similarity metric. We found
that sibilant fricatives produced by both Tacotron
vioces followed similar contrastive trends to the
natural voice. However, those involving non-sibilant
fricatives differ from the natural voice. A clear
separation can be seen in Figure 1. Through these
findings we can recommend that studies conducted
on synthetically produced sibilant contrasts may be
generalized to human speech.

Our findings are consistent with previous work
on sibilants, w.r.t. the resilience of their features
in impaired listening conditions [24]. Similarly,
in non-sibilants, inadequate feature distinctions
[25], and place confusions between /f-T/ have
been reported [26] for natural speech. Both
Tacotron voices appear to overcome this inadequacy,
basing classification primarily on longer noise
durations in the labiodental /f/ and /v/. However,
previous evidence suggests that spectral features
are more informative of place in non-sibilants,
instead of durations [19]. This indicates that
insufficient contrastive information in the natural
voice may cause cue trading in Tacotron voices
to maintain contrast. This introduces an acoustic
detail which may not be expected by listeners.
Whether this impacts cognitive load, needs to be
substantiated with carefully controlled perception
experiments. Similarly, while this study shows
featural importance through SVM and statistical
tests, the perceptual relevance of these features
should be established through subjective category
perception tests, and supported further through
cross-linguistic explorations.
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