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ABSTRACT 

 

Text-to-speech synthesis based on deep neural 

networks can generate highly humanlike speech, 

which revitalizes the potential for analysis-by-

synthesis in speech research. We propose that neural 

synthesis can provide evidence that a specific 

distinction in its transcription system represents a 

robust acoustic/phonetic distinction in the speech 

used to train the model.  

We synthesized utterances with allophones in 

incorrect contexts and analyzed the results 

phonetically. Our assumption was that if we gained 

control over the allophonic variation in this way, it 

would provide strong evidence that the variation is 

governed robustly by the phonological context used 

to create the transcriptions.  

Of three allophonic variations investigated, the 

first, which was believed to be quite robust, gave us 

robust control over the variation, while the other two, 

which are less categorical, did not afford us such 

control. These findings are consistent with our 

hypothesis and support the notion that neural TTS can 

be a valuable analysis-by-synthesis tool for speech 

research. 
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1. INTRODUCTION 

The outstanding success of deep neural network- 

based text-to-speech synthesis (TTS) in recent years 

has not gone unnoticed (TTS usually refers to all 

types of text-to-speech synthesis; in the following we 

use the term to refer to deep neural network-based 

text-to-speech synthesis only).  In some cases, it is 

indistinguishable from human speech. Even more 

impressive and perhaps surprising: it can be and is 

routinely trained on plain orthographic text. Although 

some findings show that phonetic or phonological 

transcriptions improve TTS quality (see e.g. [1, 2]), 

there are examples where grapheme and  phoneme 

input yield similar results (e.g. [3]). In our own work, 

we have observed that a more detailed phonemic 

representation improves the TTS quality 

significantly.  

What is not as widely known is how the transcription 

(or symbol sequence) used to represent speech 

impacts the synthesized speech in complex ways. 

Previous work has studied the impact of 

suprasegmental properties, in particular how duration 

can act as a proxy for prominence [4, 5]. In contrast, 

the present work focusses on symbols representing 

segmental speech properties. In essence, this work 

has dual goals:  

Firstly, an improved understanding of the 

relationship between symbolic representation in 

training and synthesis can lead to better TTS, which 

is a key goal in speech technology and one which has 

societal benefits, perhaps most importantly in terms 

of increased accessibility – a central goal in many 

societal policy agendas [6].  

Secondly, analyzing the largely opaque but almost 

unreasonably successful TTS models can provide 

new insights. We propose, as a novel application of 

analysis-by-synthesis [see e.g. 7], that post hoc 

interpretation [8] of TTS output as a function of its 

input can provide information on whether a context-

dependent phonetic-phonological distinction 

included in the transcription is reliably realized in the 

speech used to train the TTS. 

In this paper, we focus on the second of these 

goals, and conduct initial experiments to investigate 

if we can indeed learn from post-hoc interpretation of 

TTS output. We attempt to validate the proposed 

analysis-by-synthesis method using three well-known 

phonetic-phonological allophonic variations in 

Swedish. The first of these variations, the lowering of 

/ɛ/ and /ø/ in front of /r/, is known to be categorical 

and in complementary distribution in the dialect 

represented in our experiments. The second variation, 

the (de)aspiration of stop consonants following /s/, is 

described as less robustly governed by phonological 

context. The third variation, the allophonic variation 

of /r/ itself, is expected to be more difficult to capture 

due to its freer nature. We trained multiple TTS 

models systematically varying the symbol 

representations of these phonemes and analyzed their 

outputs in relation to these variations. Our results are 

consistent with our expectations and support the 

potential usefulness of TTS as a research tool for 

speech science. 
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2. BACKGROUND 

2.1. Current TTS research 

Most current TTS publications focus squarely on the 

machine learning (ML) aspect of TTS. They are 

primarily concerned with the algorithms and the 

mathematical fit of the model and use speech 

primarily as a case study for testing. For reasons of 

comparability of the algorithms used, that type of 

work exhibits a strong preference for pre-processed, 

well-known data sets. As an example, the LJ Speech 

dataset for English TTS [9], with fixed transcriptions 

and fixed preprocessing of the audio as well as the 

text, is used for the vast majority of all publications 

on English TTS. While these studies may be useful 

for speech technology, they have limited value for 

speech science. In contrast, we look in this paper to 

analysis-by-synthesis [7] as a method to investigate 

the nature of speech and provide insight into 

phonetics and phonology. 

2.2. Latent phonetic features 

Modern TTS systems are typically trained on a 

symbol sequence representing the orthographic text 

and a sequence of spectrograms representing the 

corresponding speech. This means that no explicit 

information is provided on the pronunciation of 

words in isolation or in context, and the 

representation of the acoustic signal is severely 

impoverished. Despite this, the speech generated by 

systems trained in this manner can rate on par with 

human speech [10, 11], at least within the limitations 

of current evaluation metrics  [12–14].  

The fact that TTS systems generate speech 

reminiscent of a native human speaker despite purely 

orthographic transcriptions suggests that the models 

capture pronunciation implicitly. In machine 

learning, characteristics that are encoded implicitly 

and opaquely in the models are often referred to as 

latent features, and in text processing, latent semantic 

features denote implicit semantics learned by 

language models [15]. By analogy, we discuss latent 

prosodic features in [4], and here we use latent 

phonetic features to refer to implicitly learned 

segmental speech characteristics which can provide 

insights into phonetics and phonology.  

2.3. Effects of symbol inventory in neural TTS 

TTS symbol sets that go beyond the graphemes often 

include representations for a range of speech 

phenomena. Most commonly, they hold phones or 

phonemes, stress, and boundary types. The symbol 

sets of four companies developing Swedish TTS [16–

19] all include separate symbols for the lowered 

variants of short and long /ɛ/ and /ø/. One included 

separate symbols for aspirated /p, t, k/. None included 

more than one symbol for Swedish /r/, although some 

used separate symbols for non-Swedish /r/ sounds 

(e.g. English [ɹ]). 

The selection of speech phenomena in the TTS 

symbol inventory impacts the TTS output. [20] 

trained several systems on podcast speech with 

different symbolic representations of filled pauses. 

Omitting filled pauses in the transcriptions resulted in 

a system that inserted filled pauses in reasonable 

places, but without the means to prevent these 

insertions. Using a single token for “uh” and “um” 

allowed for the removal of filled pauses and their 

insertion in specific places, but when the symbol was 

used in the text, the choice of "uh" or "um" was made 

implicitly by the system. Transcribing "uh" and "um" 

as separate tokens gave the user explicit control over 

both placement and type. We have observed the same 

effect with other phenomena, such as audible breath, 

in our own work. It may be worth noting in this 

context that explicit control is not always desirable in 

TTS. While the ability to control filled pauses allows 

the user to specify their placement, a TTS that inserts 

them in appropriate places on its own can solve this 

task without requiring user knowledge. In short, the 

two solutions will be good for different tasks. 

We aim to use the insights from [21] to investigate 

segmental properties of a single Swedish speaker's 

speech. Specifically, we will examine three phonetic-

phonological variations in Swedish. 

2.4. Allophones of the vowels /ɛ/ and /ø/ 

In many Swedish dialects, and particularly in the 

eastern part of Sweden including the Stockholm area, 

the long vowels /ɛː/ and /øː/ are pronounced as the 

more open allophones [æː] and [œ̞ː] when preceding 

/r/ or a retroflex consonant [22–25]. This also applies 

to the short vowels /ɛ/ and /œ/ which are lowered to 

[æ] and [ɶ] in the same context. The lowering of short 

vowels is even more widespread among Swedish 

dialects than for long vowels [22]. There are 

exceptions to this pronunciation, such as when a 

morpheme boundary occurs after the vowel [23]. This 

variation is known as a robust complementary 

distribution and is clearly present in our training data. 

2.5. Aspiration in the stop consonants /p/, /t/ and /k/ 

One of the most widely referred to phonetic variations 

used to illustrate complementary distribution in 

Swedish (as well as English) is the aspiration of the 

voiceless stops /p/, /t/ and /k/ and the absence of this 

aspiration when the stop is preceded by an /s/ in the 

same syllable [23, 24, 26, 27]. Following a morpheme 

boundary, such as the initial position of the second 

16. Speech Technology ID: 939

3157



component of a compound (e.g. “ås-topp”, en. 

“ridge” ) the stop will generally retain its aspiration 

[22, 23]. The strength of aspiration can vary 

depending on many factors, and the strongest 

aspiration generally occurs in word-initial position in 

stressed syllables. Aspiration is often weaker and can 

even disappear in unstressed syllables [22, 24].  

2.6. Free variation of /r/ 

The phoneme /r/ exhibits particularly rich phonetic 

variation and is often referred to as the class of 

rhotics. This variation occurs not only between 

languages, but also within languages representing 

both dialectal variation and individual speaker 

variation. Phonetic realization of /r/ includes trills, 

taps, flaps, fricatives and approximates as well as the 

influence on vowel quality by a following /r/. In 

addition to this variation in manner of articulation, 

place of articulation can range from dental to uvular 

[24, 28–30]. In Swedish, we find a pronounced 

dialectal variation in place of articulation. Southern 

Swedish dialects employ uvular place of articulation 

while central and northern Swedish dialects use 

alveolar place. In between, we find large areas where 

both places are found in complementary distribution 

[26, 31, 32]. 

The rhotics of the central Swedish dialect and the 

Stockholm area depends on individual preferences, 

the articulation force used and the degree of formality 

[24, 31]. However, both Elert and Malmberg point out 

that trills and taps are more common following a 

syllable-initial consonant (e.g. prova, träna, kråka). 

[31] includes syllable-initial /r/ before a stressed 

vowel as a position favoring a trill in certain situations 

but a fricative realization is also common. This 

variation is noted to be partially regulated by vocal 

effort and speaker preferences.  According to [31], the 

fricative is the most common realization following a 

vowel (e.g. bara) or in word-final position (e.g. 

pojkar). [23] even lists /r/-deletion in unstressed 

positions as characteristic of the Stockholm dialect. 

3. METHOD 

Our proposed method starts with a TTS model that 

can produce a specific allophonic variation 

represented by a single symbol S. We then train a new 

model on the same speech data, but with an extended 

symbol inventory that separates allophones into 

separate symbols S1 and S2 based on phonological 

context rules. We test the model by synthesizing an 

utterance with S1 in a context where S2 is expected, 

or vice versa. If the mismatched allophone is 

noticeable to human listeners, we have gained explicit 

control over the allophones, otherwise we have not. 

3.1 Assumptions and hypothesis 

We assume that if we gain explicit control over the 

allophones in this procedure, it is because the 

phonological distinction expressed by the rule 

matches the distribution of acoustic/phonetic 

variation in the speech data, which is consistent with 

the variation being governed by the phonological 

distinction. Failure to control the allophones may 

occur for a wide range of reasons and is not 

informative. 

We hypothesize that we will be able to control the 

famously robust and categorical /ɛː, øː, ɛ, œ/ 

allophones, and unable to control the notoriously free 

/r/ variation. As for aspiration of consonant stops, we 

defer prediction as this variation is described as 

robust in some contexts and much less so in others. 

3.2 Stimuli design 

We designed stimuli to test our hypothesis using four 

Swedish neural TTS voices trained on the same audio 

data of a professional female speaker from the 

Stockholm area. TTSBASE used a minimal phonemic 

symbol inventory with extra symbols for pauses and 

Model Context for additional symbols Original symbols (N) Additional symbols (N) 

TTSÄÖ Vowels before /r/ or retroflex 

/ɛː/ (2073) 

/øː/ (2013) 

/ɛ/ (47996) 

/œ/ (1797) 

[æː] (2563) 

[œ ̞ː] (2763) 

[æ] (2515) 

[ɶ] (1981) 

TTSPTK Voiceless stops after /s/ in same syllable 

/p/ (9394) 

/t/ (36939) 

/k/ (17737) 

[p] (723) 

[t] (4251) 

[k] (2424) 

TTSR /r/ following voiceless stop in same syllable /r/ (46403) [r] (1841) 

    

Table 1. Composition of the three models with separate symbols for pairs of allophones. 

In the base model TTSR the original symbol is used for all allophones. 
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word boundaries. The other three models (TTSÄÖ, 

TTSPTK and TTSR) added explicit symbols for our 

selected allophonic pairs of /ɛː, øː, ɛ, œ/, /p, t, k/ and 

/r/ to the symbol inventories (see Table 1). Each 

model was trained for 600 epochs (iterations of the 

entire training data) in Nvidia’s PyTorch 

implementation of Tacotron 2 [33] and synthesized 

with the WaveGlow vocoder [34] trained 650  epochs 

on the same voice as the Tacotron models. 

We designed three sets of test sentences to 

showcase each of the three Swedish phonological 

variations. All sentences were synthesized with the 

TTSBASE model. Next, each set of test sentences was 

synthesized with its respective TTS model in two 

ways: (1) with the specific symbols in their correct 

places according to the context and (2) with the 

opposite symbol of what the context would dictate. 

We synthesized each sentence five times in each 

condition to provide a sense of the variation in the 

models. 

3.3 Analyses 

To evaluate our hypotheses, we conducted the 

following analyses: (1) We evaluated the general 

capability of the TTSBASE model by listening to and 

comparing the synthesized sentences to the original 

speaker's voice, dialect, and speaking style. (2) Three 

experienced Swedish phoneticians performed a 

qualitative analysis of the renditions with 

interchanged allophones for each series of test 

sentences to determine if our expectations were met, 

and our hypothesis supported. (3) For the /p, t, k/ test 

sets, we also conducted a quantitative analysis of 

voice onset time (VOT), a strong predictor of 

aspiration. 

4. RESULTS 

The base model performed well for all test sets. Even 

though 600 is a quite low number of epochs when 

training Tacotron 2, the TTS was similar to the 

original speaker in terms of voice, dialect, and 

speaking style. No major differences were observed 

between the test sets, and the allophones of interest 

were all produced in an appropriate manner. 

For TTSÄÖ, the renditions with the allophone 

symbols correctly placed were indistinguishable from 

the base model. In contrast, interchanging the 

symbols consistently produced the allophones in a 

manner that sounded like proper speech, but highly 

unlikely for the specific voice due to the context. In 

pre-rhotic position, the more closed allophones gave 

a clear impression of a different dialect, and in non-

pre-rhotic position, judgements varied between yet 

another dialect or, if semantics permitted, the same 

word with an infixed /r/, such that “höna” ([hœ̞ːna], 

en. “hen”) was perceived as “hörna” ([hœ̞ːɳa], en. 

“corner”).  

For TTSPTK, interchanging the symbols used to 

capture aspirated and non-aspirated voiceless stops 

did not produce any clear perceptual differences in 

the renditions. As a follow-up, we measured voice 

onset time (VOT) of stops after /s/ in the same 

syllable. We omit the details here since again, no 

differences were found.  

Finally, for the TTSR, models, the general quality 

was indistinguishable from the base model regardless 

of whether the symbols were interchanged. Two 

listeners perceived that a more pronounced, 

sometimes trilled /r/ was used more often when the 

symbol intended to capture trills was used, but we 

were unable to quantify this observation. The model 

produced a relatively wide range of /r/ realizations, all 

sounding appropriate, but these variations could not 

be predicted by phonological context. 

5. DISCUSSION 

Our primary goal was not to experiment with 

phonetic control for TTS production purposes, but 

rather to use TTS as a tool to gain insights into the 

powerful latent phonetic features in neural TTS 

systems. Our hypothesis that using separate symbols 

for /ɛː, øː, ɛ, œ/ and their lowered allophones, which 

are reliably governed by phonological context, would 

allow us to control the distribution of these 

allophones was borne out. This supports the notion 

that the ability to control a variation using different 

symbols that are assigned based on a principle (such 

as phonological context rules) indicates the accuracy 

of that principle in describing the variation. By 

utilizing the complex but inaccessible TTS models as 

a tool in conjunction with our perception, we can 

study speech beyond the limitations of easily 

measurable and accessible phonetic features. While 

this is currently a proof-of-concept, it has the 

potential to expand our understanding of speech. 
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