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ABSTRACT

Net Auditory Distance is a phonotactic principle that
computes the preferability of consonant clusters based on
a universally preferred distribution of phonetic distances
between adjacent segments. The distances pertain to
place, manner and laryngeal features, all of which are
expected to contribute to cluster structure. In this paper,
we make an attempt at extending the principle by
determining the most optimal combination of  weighted
distances required to predict the frequency of word-onset
consonant groups in German. Statistical modelling using
gradient boosted decision trees has revealed that, among
others, the manner (sonority) distance of the consonant-
vowel transition is the most important predictor of cluster
frequency. The findings make it possible to assign weights
to distances used in the computation of phonotactic
preferability, ultimately leading to a more refined
classification of German word-onsets.

Keywords: consonant clusters, phonetic features,
weights, frequency, German

1. INTRODUCTION

One of the main themes in phonological research is
the relationship between structure and usage. Efforts
have been invested in the study of combinations of
consonants in the languages of the world, revealing
that their distribution patterns can be related to
markedness and frequency [1-3]. This relationship
has been also investigated for such clusters in
Standard German, with markedness defined in terms
of phonetic / phonological properties [4-6]. For
instance, [6] asked which phonetic distances
characterizing neighbouring segments best predict
the frequency of word-initial clusters. The distances
were derived from the Net Auditory Distance (NAD)
principle (Sect. 2) that measures the size of contrast
between adjacent consonants (C) and vowels (V) in
terms of the place of articulation, manner of
articulation and laryngeal features. The results of the
study suggest that type frequency increases with an
increase in the manner of articulation distance
between two consonants (see [7] for similar results).

In this paper, we expand on the previous study by
analysing the same dataset using different statistical
methods. Although linear regression has been used
to model the relationship between structure and
usage, it is not always best-fitted to the nature of
frequency data. Outliers lower the efficiency of
linear models; [6] point to the lack of normality in
residuals caused numerous low-frequency clusters
and high-frequency /ʃt/. Thus, this analysis compares
the predictions of linear regression and XGBoost, a
technique used to model non-normal distributions. 

In the following sections, we introduce the
phonotactic model (2), propose a method of
weighing distances based on XGBoost values (3),
and discuss implications for a new weighted version
of NAD (4).

2. PHONOTACTIC MARKEDNESS

2.1. Net Auditory Distance

NAD [8] is a measure of auditory distances between
pairs of segments in a cluster, proposed in the
framework of Natural Phonology [9,10]. Phonotactic
preferability is computed based on well-formedness
conditions incorporated from higher linguistic levels.

NAD is grounded in perceptual contrast,
following the psychological principle of figure and
ground [11]. It assumes that segments forming a
universally preferred cluster should be sufficiently
different from each other in order to be clearly
perceived. Perceptual clarity is best achieved by the
combination of a quieter C and a louder V [12,13]
for two reasons. First, auditory cues in CV transition
are more robust and richer in place cues than in VC
[14,15]. Additionally, CV interface facilitates more
precise articulation compared to VC [16].  

The re levance of phonet ic contras t i s
phonologically captured by the principle of clarity of
perception [9], suggesting that larger phonetic
distances between adjacent segments are expected to
facilitate perception. This is reflected in NAD, where
markedness conditions are based on a well-defined
arrangement of net distances between pairs of
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consonants and vowels neighbouring on them in
word-initial, medial and final (C)CCs. 

2.2. Computation of individual distances

Calculations are computed over 3 types of distances:
the manner (MOA) and place (POA) of articulation
as well as the sonorant/obstruent (SO) contrast,
along the values in Table 1 and well-formedness
conditions. The condition for a preferred initial CC
requires that the distance between two consonants be
larger than or equal to the distance between a
consonant and the following vowel. 
NAD(C1C2) ≥ NAD(C2V), where:
NAD(C1C2) = |(MOA1-MOA2)| + |(POA1-POA2)|
+ |SO|, and NAD(C2V) = |(MOA1-MOA2)| + |SO|. 

In NAD, MOA distances correspond to sonority
distances [17], which rise by 1 from a vowel towards
the least sonorous plosives. POA distances, in turn,
relate to the segments' anatomical location in the
vocal tract [18]. The SO distance captures the
sonorant/obstruent distinction. Distance=0 specifies
S+S and O+O sequences, while distance=1 holds for
sequences that belong to different classes. 

S A F N L G V
5.0 4.5 4.0 3.0 2.5 2 1.0 0
p b  m   1.0 bilabial

pf f v 1.5 lab-dent

t d ʦ s z n l          2.0 alveolar

         ʃ  ʒ 2.5 post-alv.

          ç  ʝ j 3.0 palatal

k g             x ŋ 3.3 velar

ʁ ʀ 3.6 uvular

  4.0 (radical)

        h 5.0 (glottal)

Table 1: NAD distances for German (capitals refer
to Stop, Fricative, Affricate, Nasal, Liquid, Glide). 

For example, the NAD computation for /bj/ involves:
C1C2=|5-1|+|1-3|+|1|=7, and C2V=|1-0|+0=1. The
cluster meets the well-formedness condition (7≥1),
and is thus preferred. The total distance value for a
cluster, referred to as 'NAD product', is an index
expressing the degree of cluster preferability. NAD
product is calculated by means of subtraction:
NAD(C1C2)-NAD(C1V), and amounts to 6 for /bj/.
The larger the NAD product value, the better the
cluster. (For a detailed exposition of other conditions
and more detailed NAD categories see [8].)

The numerical values assigned to each consonant
reflect the fact that various languages may require
phonological distinctions that are more or less fine-

grained. Thus, in line with the sonority scale in [19],
the most recent version of NAD contains 12 MOA
classes for consonants and 5 classes of vowels based
on height and peripherality (see [20] for an overview
of the revised NAD version). 

3. ANALYSIS

3.1. Data

The data analysed in this study were drawn from [4],
who extracted a cluster list from phonological
descriptions, coursebooks, dictionaries [21-23].
Some clusters are found in rare words, proper nouns
and loans, e.g. /bj skv/ (Björn, Squash). For reasons
of space, the proposed analysis is based only on CC
types, as presented in Table 2. 

Clusters (n=46)
bj bl bʀ dʀ fj fl fʀ gl gm gn gʀ kl km kn ks kʀ kv 
pfl pfʀ pl pn ps pʀ sf sk sl sm sn sp sʀ st sʦ sv ʃk 
ʃl ʃm ʃn ʃp ʃʀ ʃt ʃv tj tʀ tv ʦv vʀ 

Table 2: Initial CC clusters in German.

Table 3 presents type frequency of each cluster,
i.e. the cumulative frequency of all words starting
with this cluster. The data were drawn from the
corpus of newspaper texts Leipziger Wortschatz-
Portal [24], which contains 1.65 million word types.
In rows with multiple clusters, the frequency value
refers to an individual CC. 

Cl Freq Cl Freq Cl Freq
ʃt 1261 bl 248 ps 27
pʀ 754 gl 247 sv, sm 14
ʃp 648 ʦv 235 sp 13
gʀ 619 pl 188 ks, bj, gn 10
fʀ 599 kv 144 sʦ 9
kʀ 569 ʃʀ 121 sn, tj 8
tʀ 538 ʃn 114 fj, sʀ 6
bʀ 458 ʃm 99 tv 5
kl 429 kn 98 vʀ 4
dʀ 324 sk 80 sf, gm 2
ʃv 312 pfl 53 pn, ʃk, km, pfʀ 1
fl 300 st 45
ʃl 292 sl 28

Table 3: Type frequency of initial CC clusters.

3.2. Procedure

We ran a series of analyses using linear regression
and XGBoost models, and the R environment [25].
The goal was to identify those independent variables
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that best predict type frequency (i.e. variables
generating models with the lowest mean squared
error). We compared linear regression with models
using XGBoost [26], i.e. gradient-boosted decision
trees. Both techniques make it possible to find
relations between variables but linear regression is
limited to linear dependencies, while XGBoost is
also sensitive to non-linear relations. Informally
speaking, the latter method divides data into
homogenous groups depending on the values of the
dependent variable. The contribution of a variable to
a model is expressed with a numerical value,
indicating the variable's importance. The comparison
of models was based on the mean squared error
obtained through 5-fold cross-validation process (C-
V MSE). A complete list of tested models M
(numbered 1-20) is given in Table 4. The MSE
values are rounded to the nearest tens. 

M Independent variables MSE
1 MOA_C2V (0.46)+MOA_C1C2 (0.28)+ 

POA_C1C2 (0.27)+SO_C1C2 
(0)+SO_C2V (0)

260

2 MOA_C2V (0.35)+POA_C1C2 (0.34) 
+MOA_C1C2 (0.19)+SO_C1C2 (0.12)

261

3 MOA_C2V (0.45)+POA_C1C2 
(0.29)+MOA_C1C2 (0.26)+SO_C2V (0)

261

4 MOA_C2V (0.43)+MOA_C1C2 (0.29) 
+POA_C1C2 (0.28)

257

5 MOA_C1C2 (0.56)+POA_C1C2 (0.44) 247
6 MOA_C2V (0.57)+MOA_C1C2 (0.43) 252
7 MOA_C2V (0.51)+POA_C1C2 (0.49) 258
8 MOA_C1C2 (1) 239
9 POA_C1C2 (1) 252
10 MOA_C2V (1) 242
11 MOA_C1C2 (0.54)+POA_C1C2 (0.44) 

+SO_C1C2 (0.03)
248

12 MOA_C1C2 (0.82)+SO_C1C2 (0.18) 240
13 POA_C1C2 (1)+SO_C1C2 (0) 259
14 SO_C1C2 (1) 259
15 MOA_C2V (0.77)+SO_C2V (0.23) 234
16 SO_C2V (1) 259
17 NAD_C2V (0.56)+NAD_C1C2 (0.44) 278
18 NAD_C1C2 (1) 291
19 NAD_C2V (1) 242
20 NAD_product (1) 290

Table 4: Independent variables constituting tested
models. The estimated importance of each
variable in XGBoost is given in brackets. The
best models (with the lowest C-V MSE values)
are marked in bold type. 

Type frequency was coded as a dependent
variable. The tested models involved different
combinations of independent predictors derived from

the well-formedness condition in Sect. 2.2, i.e.
distances for pairs of segments (MOA_C1C2,
POA_C1C2, SO_C1C2, MOA_C2V, SO_C2V),
summated distances for pairs of segments
(NAD_C1C2, NAD_C2V) and NAD product.

3.3. Results

In this section, we present XGBoost analyses for CC
word onsets based on 5 best XGBoost models, and
compare them with linear regression models.  

The best model (15, C-V MSE=234.31) features
two variables; MOA and SO distances for the C2V
transition. The model constitutes a better fit to the
frequency data than linear regression (C-V
MSE=273.22). The primacy of the non-linear model
is visualized below. 

Figure 1: Scatterplots presenting observed vs.
expected values for linear regression (top) and
XGBoost (bottom) using MOA_C2V and SO_C2V
variables (model 15). In both plots, the diagonal
line represents the line of perfect fit.

Figure 1 juxtaposes the distribution of the predicted
(y axis) and observed (x axis) values in linear
regression and XGBoost. As can be seen, the
predicted values of XGBoost are much closer to the
observed values. All expected values of linear
regression lie within a very narrow range (ca. 180-
210), which is not in line with the observed values
(most of which range from 1 to ca. 600). The
XGBoost model is much more flexible, displaying a
greater variety of expected values (mostly in the
range from 1 to ca. 400). The strength of XGBoost
lies in the lack of assumption on linearity, and its
ability to capture non-linear dependencies. Model
1 5 captures the contribution of MOA_C2V and
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SO_C2V, whereby the importance of the manner
distance (77%) outweighs the SO distance (23%).

Other models with low C-V MSE values are
listed under (8, 10, 12, 19). The summary of the
prediction error obtained through cross-validation
for the models is given in Table 5. In each case, the
decision tree method provides better results. For
clarify of presentation, we also include model 15.

M Linear regression XGBoost
8 251.69 238.94
10 264.93 241.84
12 260.11 239.66
15 273.22 234.31
19 266.14 241.84

Table 5: Comparison of the CV-MSE measures for
5 best linear regression and XGBoost models.

4. TOWARDS WEIGHTED AVERAGE NAD

The findings of the present study offer a starting
point for introducing weights to the NAD principle.
The analyses have revealed not only a novel
statistical method that can be successfully used in
determining such weights but also a selection of
distances that could be possibly eliminated from
future NAD calculations due to being of little use in
predicting type frequency. 

The model that best predicts the frequency of
CCs includes two predictors: MOA_C2V and
SO_C2V, among which the manner distance plays a
prime role (ca. 80%). Other best models in Table 5
partially overlap with model 15: (8, 12) are also
based on MOA_C1C2, and the remaining models
(10, 19) include MOA_C1C2 and/or  SO_C1C2.

It must be emphasized that models including a
wider range of variables tend to display a greater C-
V MSE compared to simpler models (e.g. 2, 3). This
holds true particularly for models that contain
POA_C1C2 and/or SO_C1C2, SO_C2V. In fact, the
importance of the latter two variables tends to be low
or none in models with three or more independent
variables (1-3) or models using POA (9, 13). This
suggests that information provided by SO duplicates
information arising from POA, but can supplement
the information from MOA. 

Finally, cumulative distances were shown to be
poor predictors of cluster frequency. NAD_C1C2
and NAD product are characterized by the highest C-
V MSE values.

5. CONCLUSIONS

The findings of the study support previous
theoretical and empirical work on phonotactics. First
of all, they suggest that manner (or sonority)
distances [27-29] constitute a relevant phonotactic
primitive and motivate the core structure of word-
initial clusters in German. A similar observation was
made in an independent study by [7]. Using the same
data and a different set of predictors, [7]
demonstrated that manner of articulation distances
and voicing constitute the backbone structure of
German clusters. That is, average frequency values
of clusters were shown to be higher for clusters
displaying larger manner distances and contrast in
voicing. These observations go in line with [30]
arguing that an adequate description of phonotactic
possibilities of a language requires operating on
weighted phonological features.

Moreover, the results, along with the previous
contributions, testify to the relevance of fine-
grained categories in the study of phonotactics.
Neither NAD product nor cumulative NAD values
were shown to account for the frequency data. This
observation might also explain why the sonority
slope of clusters, usually expressed in binary terms
as well-formed/ill-formed, preferred/dispreferred,
turns out to be an insufficient criterion in accounting
for complex sequences of segments. In turn, subtle
sub-segmental cues and gradient classification of
structures are expected to be more informative, as
argued in [30].

Previous work [7] using the same dataset revealed
the importance of CC distances. Here, we have
showed that MOA and SO distances for the
consonant-vowel transition constitute the best
correlates of type frequency. The CV transition,
representing an alternation of a quieter C and louder
V, is the most salient sequence cross-linguistically
[13, 14]. This observation is captured by the distance
matrix in [20]: in CCV, the sequence of consonants
should display larger contrast compared to CV. 

Finally, let us note that type frequency should be
viewed as reflecting the phonotactic potential of a
language. The relevance of the manner of
articulation might also suggest a direction through
which the phonotactic inventory of German has
developed historically (see also [31] for similar
results), and a way in which it might expand. The
question on how every-day usage shapes cluster
inventories (token frequencies) will be addressed in
another study. 
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