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ABSTRACT 

 
Speech adaptations occur frequently in the presence 
of perceived communication barriers. Modern 
technological advancements have brought with them 
new interlocutors for human speakers with the 
introduction of voice-AI assistants. Findings have 
shown that voice-AI-directed speech is characterised 
by an increase in vocal effort resulting from the 
presumed capabilities of these systems for 
understanding speech. However, studies focus solely 
on voice-AI assistants which perform speech 
recognition. In this study, we present an acoustic 
analysis of speaker interactions with two voice-AI 
systems with different goals (speech interpretation vs. 
speaker verification). Using f0 mean and range as 
acoustic correlates of vocal effort, we found that 
speakers show some evidence of increased vocal 
effort towards voice-AI systems regardless of final 
task, however, this is enhanced by speech 
intelligibility goals. This finding is interpreted to 
suggest that voice-AI-directed speech globally 
exhibits increased vocal effort, but task plays a clear 
role in the extent of this. 
(149 words) 
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1. INTRODUCTION 

Speech in challenging conditions, i.e., in noisy 
environments or towards less-proficient interlocutors, 
is frequently observed to be produced with increased 
vocal effort, characterised by increased fundamental 
frequency (f0) mean and range [e.g., 1-7]. The 
introduction of voice activated artificially intelligent, 
or voice-AI, assistants has created a new kind of 
challenging interlocutor, which speakers assume to 
require more effortful talk [7–11]. However, human 
interactions with these systems have thus far only 
been explored using speech recognition technologies. 
Contrastively, voice-AI systems can perform 
numerous tasks which do not process speech in the 
same way, i.e., speaker verification. It remains to be 
explored how speakers interact more globally with 
voice-AI systems and how the specific task plays a 
role in the amount of vocal effort employed. 

In this study, we investigated if speakers employ 
differing vocal effort towards voice-AI systems 

according to task. We designed a Wizard of Oz 
experiment [e.g., 12–14] in which participants 
interacted with two different mock voice-AI systems; 
a Speech Recogniser, which aimed to understand 
their speech; and a Speaker Recogniser, which aimed 
to identify them from their voice. We present here the 
findings of an acoustic analysis which explores two 
acoustic correlates of vocal effort (f0 mean and range), 
to examine differences in how speakers interact with 
the two systems. 

1.1. Vocal effort in speech communication 

Increased vocal effort occurs frequently in 
challenging communicative environments, for 
example, when speakers shift from a neutral speech 
to shouted speech in the presence of noise [e.g., 1–5] 
or when the distance between interlocutors is 
increased [e.g., 6, 15]. One common acoustic 
correlate associated with this phenomenon in the 
aforementioned studies, is increased f0 mean and 
range. Vocal adaptations corresponding to increases 
in f0 mean and range also occur in the presence of 
challenging interlocutors or to enhance speech 
intelligibility, i.e., towards children [16–17] or voice-
AI systems [7], and are attributed in part to increased 
vocal effort. However, in these instances speech 
intelligibility requirements are confounded with 
challenging interlocutors, thus the influence of each 
individual factor on vocal effort cannot be isolated. 

1.2. Voice-AI-directed speech  

Studies have shown numerous interlocutors require 
speech adaptations for efficient communication. 
Children, hearing-impaired listeners, and, more 
recently, machines all pose intelligibility challenges 
for speakers [16–21]. The introduction of the voice-
AI assistant has commanded a new challenging 
machine interlocutor for humans, which invokes a 
speech style that is louder [22–23] and contains 
different vowel formant characteristics [23] 
compared to human-directed speech. Further, 
findings have shown increases in f0 mean and range 
in voice-AI-directed speech [22] and have attributed 
these in part to an increase in vocal effort in these 
interactions [7]. 

Thus far, voice-AI-directed speech has solely 
considered interactions with speech recognition 
technologies, such as Amazon’s Alexa or Apple’s 
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Siri, which require interpretation of speech input. 
Therefore, it is plausible that the previously observed 
voice-AI-directed speech characteristics are a by-
product of the systems requirement for speech 
intelligibility. However, in fields such as banking, 
there is an increasing use of voice-AI systems for 
voice identification/verification purposes, a task 
which considers the quality of the voice rather than 
the content of the speech. As such, the question arises 
whether speakers would employ the same vocal 
adaptations towards these kinds of voice-AI systems 
which offer a similarly challenging interlocutor, but 
without the necessity for speech intelligibility. 

1.3. Research hypotheses 

This study investigates vocal effort in interactions 
with two different voice-AI systems, a Speech 
Recogniser, and a Speaker Recogniser. Previous 
findings show speakers employ greater vocal effort, 
measured by an increase in f0 mean and range, in 
interactions with speech recogniser voice-AI systems. 
However, the extent to which this vocal effort relates 
to the task of speech understanding or to the generally 
challenging interlocutor remains unknown. We 
predict that, if vocal effort is employed in voice-AI 
interactions due to the perceived communicative 
barriers of the system, vocal effort will be similar in 
both interactions. However, if speech intelligibility 
challenges necessitate enhanced vocal effort, we 
expect lesser vocal effort will be employed towards 
the Speaker Recogniser. 

2. METHODS 

2.1. Data collection 

39 Swiss German speakers (20 F) completed a 
Wizard of Oz experiment, an expansion on the 
experiment design introduced in [24], designed using 
Gorilla Experiment Builder [25]. Participants spoke 
to two mock voice-AI systems; a mock speaker 
recognition system (SpkrRec) with a male text-to-
speech voice, Verifico, which aimed to recognise the 
individual from their voice input; and a mock speech 
recognition system (SpchRec) with a female text-to-
speech voice, Vicky, whose task was to interpret their 
speech. Participants spoke 34 different prompts to 
each of the systems which then offered either an 
immediate correct response, or a misrecognition. 
Each trial was repeated until the “system” was 
successful. Responses were assigned randomly by the 
experiment software, but participants would only ever 
receive a maximum of misrecognitions per prompt. 
All speakers spoke Swiss Standard German 
throughout the experiment [26]. Full details of the 
experimental procedure can be found in [27]. 

Prior to the interactions, speakers were recorded 
reading a list of the same 34 sentences used as 
prompts in the interaction tasks which were used as 
baseline productions for each speaker. 

2.2. Data analysis 

Analysis was completed using only first productions 
of a sentence, resulting in 102 sentences per speaker. 
Repetitions of sentences following an error response 
were excluded so that all sentences were produced 
following positive feedback (a recognition) or no 
feedback in the case of the read speech condition. 

Acoustic measurements were automatically 
extracted over each target sentence in each of the 
three tasks using a Praat script [28]. Fundamental 
frequency (f0) minimum and maximum values were 
extracted for each sentence in logHz, to calculate the 
f0 range (f0max – f0min). Mean f0 was calculated at 15 
equidistant intervals across each sentence, also in 
logHz, and averaged to calculate the mean f0 value. 
All measures were taken using gender-specific pitch 
ranges (50-200Hz for males; 75-400Hz for females). 
All measures were also z-scored prior to statistical 
analysis to account for individual speaker differences.  

2.3. Statistics 

Each acoustic measure was subjected to statistical 
analysis to explore the differences between 
interactions with each voice-AI system. Mean f0 and 
f0 range were modelled in separate linear mixed 
effects models with the lme4 R package [29], with 
identical model structure: fixed effects of Task 
(SpkrRec, SpchRec, Read), Gender (Male, Female), 
plus by-Sentence and by-Speaker random intercepts.  

3. RESULTS 

3.1. Mean f0 

Figure 1 contains the distribution of mean f0 for 
speakers’ productions of each sentence across the 
three tasks. Model output showed a statistically 
significant increase in mean f0 in both tasks, 
compared to the Reading task (SpchRec: β = 0.553, 
SpkrRec: β = 0.1738, both p < 0.0001). The main 
effect of Gender failed to reach significance. Post-hoc 
tests to assess the directionality of this relationship 
were conducted in the form of pairwise t-test 
comparisons with Bonferroni correction for multiple 
hypothesis testing. Findings confirmed a statistically 
significant difference between f0 mean in the SpchRec 
and SpkrRec tasks compared to the Reading task, as 
well as a statistically significant difference between 
the two voice-AI tasks (all p < 0.001).   
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Figure 1: Boxplots showing the median, range, and inter-
quartile range of the distribution of scaled mean f0 values 

for speakers’ production of each utterance by task. 

3.2. f0 range   

Figure 2 shows the distribution of f0 range for 
speakers’ productions of each sentence in each of the 
three tasks. The model output showed a statistically 
significant increase in f0 range in the SpchRec task, 
compared to the Reading task (β = 0.0895, p = 0.002). 
However, the difference between the SpkrRec and 
Reading tasks was not statistically significant. The 
main effect of Gender also failed to reach 
significance. Post-hoc analysis of f0 range by Task 
was again completed using pairwise t-test 
comparisons with Bonferroni correction. The output 
showed a statistically significant difference between 
the SpchRec and the Reading task (p < 0.001), but not 
between the Reading and SpkrRec tasks (p = 0.5396), 
or the SpchRec and SpkrRec tasks (p = 0.2573). 
 

 
Figure 2: Boxplots showing the median, range, and inter-
quartile range for the distribution of scaled f0 range values 

for speakers’ produced utterances by task. 

3.3. Accommodation to voice-AI 

We also tested for a potential confound in the finding 
that mean f0 was substantially higher in the SpchRec 
task. Given the voice in this task (Vicky) was a female 
voice, compared to the male voice (Verifico) in the 
SpkrRec task, speaker accommodation towards the 
voice-AI system would increase in average speaker 
mean f0, which may account for this finding. 

To explore this, we calculated two distances. The 
distance between the speaker’s averaged mean f0 and 
the mean f0 of each voice-AI system prior to and 
during the interaction. Mean f0 for each voice-AI was 
calculated in the same way as previously stated, and 
speaker values were averaged across each task. The 
measures were as follows:  

Distance 1: Euclidean distance between the mean 
f0 for Vicky/Verifico and each speakers’ pre-
interaction productions (Reading task) (voice-AI 
mean f0 – participants’ mean f0 [Read]) 

Distance 2: Euclidean distance between the mean 
f0 for Vicky/Verifico and each speakers’ production 
in the corresponding interaction task (Vicky mean f0 
– participants’ mean f0 [SpchRec] | Verifico mean f0 – 
participants’ mean f0 [SpkrRec]) 

 
Figure 3: Boxplots showing medians, ranges, and inter-
quartile ranges for scaled distances between averaged 
mean f0 for each speaker and mean f0 of the voice-AI 

systems, both prior and during the interaction. 

Figure 3 shows the comparison between Distance 
1 and Distance 2 for each voice-AI system. We ran a 
two-way repeated measures ANOVA to test for an 
interaction between Time (e.g., prior or during the 
interaction with the voice-AI) and System (e.g., Vicky 
or Verifico). The outcome was statistically significant 
(p = 0.0067), suggesting both factors influenced the 
difference between the distances. To assess 
accommodation towards each voice-AI system, we 
conducted further pairwise t-test with Bonferroni 
correction for repeated measures. Findings showed 
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that the difference between Distance 1 and 2 was 
significant for both voice-AI systems (Vicky: p = 
0.000196, Verifico: p = 0.032).  

4. DISCUSSION 

Overall, we find evidence to suggest that increased 
vocal effort, measured using f0 mean and range, is a 
general characteristic of voice-AI-directed speech. 
However, we observe differences in the extent of this 
depending on the task. Namely, we observed a 
significant increase in both f0 mean and range in the 
SpchRec task, but only an increase in f0 mean in the 
SpkrRec task. Further, the increase in f0 mean in the 
SpchRec task was significantly larger than that 
observed in the SpkrRec task. Therefore, it is 
plausible that, while human interactions with voice-
AI systems can be generally associated with 
enhancements in vocal effort, the necessity for speech 
intelligibility further enhances the amount of vocal 
effort in speech. 

The lesser vocal effort observed in the interactions 
with the SpkrRec system could be attributed to the 
lack of requirement for speech intelligibility. 
Previous findings of increased vocal effort towards 
challenging interlocutors are confounded with speech 
intelligibility challenges [e.g., 7, 16–17]. For 
instance, increased vocal effort observed in speech 
towards children could arise from the fact that the 
interlocutor is less proficient, or the desire for speech 
interpretation. Therefore, the vocal effort exhibited 
towards the SpkrRec could represent that induced 
solely by the presence of a challenging interlocutor. 

Contrastively, it may be that speakers did not 
deem the SpkrRec to be as challenging an interlocutor 
as the SpchRec, due to a lack of prior experience with 
the system. From post-experiment discussions, it was 
clear that participants were already familiar with 
Speech Recognition systems, but not Speaker 
Recognition systems. Therefore, the greater vocal 
effort could correspond to prior assumptions that the 
SpchRec system would be a challenging interlocutor, 
compared to a lack of prior assumptions for the 
SpkrRec. 

A potential confounding with these findings is the 
comparison with the monologue speech in the 
Reading task. Although it is likely that a voice-AI 
interlocutor would compel more effortful speech, it is 
possible that this slight increase in vocal effort we 
observe is due to the presence of the interlocutor in 
the SpkrRec task. Further research is necessary to 
explore to the effect of interlocutor presence or 
absence. 

Further consideration was given to possible 
speaker accommodation towards the voice-AI system 
which may have commanded the higher f0 mean in the 

SpchRec task. However, we observed significant 
convergence towards both systems and thus cannot 
solely attribute the increased mean f0 to speaker 
accommodation. Further, it is equally not unexpected 
that participants would converge towards the systems. 
Previous findings show speaker accommodation is a 
frequently employed technique for enhancing 
intelligibility [e.g., 30-31], and speakers have 
previously exhibited phonetic and prosodic alignment 
towards machine interlocutors [e.g., 32-34]. 

Finally, we note that f0 mean and range only offer 
an introductory look at vocal effort differences in 
these two speech styles. Additional research using a 
more comprehensive set of measures, including for 
instance, speech intensity/loudness, is necessary to 
fully examine these differences. 

Overall, the above represents a multitude of 
plausible interpretations for these findings given 
previous ideas of speech communication and vocal 
effort. We observed clear differences in speaker f0 
mean and range in interactions with two different 
kinds of voice-AI systems, however, which factor 
constitutes to this finding is unclear. Nonetheless, it 
is conceivable that speakers globally adopt more 
effortful talk when speaking to voice-AI systems, 
which is enhanced by speech intelligibility 
requirements.  

5. CONCLUSION 

The present study investigated vocal effort in 
interactions with two voice-AI systems which 
perform different tasks. Findings showed a tendency 
for increased vocal effort, captured using f0 mean and 
range, in interactions with both of the voice-AI 
systems compared to the Reading task. However, 
substantially greater vocal effort was employed when 
speech intelligibility was required. These findings are 
interpreted to suggest that voice-AI-directed speech 
globally exhibits increased vocal effort, but the extent 
to which this occurs can differ depending on the task. 
Future research should consider further factors 
influencing vocal effort, namely, the goal of the 
interaction and the presence of an interlocutor. 
Further discussions about the different kinds of voice-
AI systems and human interactions with them, would 
also be beneficial. 
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