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ABSTRACT 
 
Laryngeal voice qualities (e.g. breathy and creaky 
voice), variable within and across speakers, often 
pose a challenge in data collection. Their acoustic 
correlates are still inadequately understood. This 
study revisits the acoustics of laryngeal voice 
qualities in high-quality recordings of continuous 
British English speech produced by experienced 
phoneticians. Through principal component analysis 
and multinomial logistic regression with l1 
regularisation, this study identifies contributions of a 
variety of acoustic measures to the classification of 
laryngeal voice qualities and provides a 
multidimensional acoustic profile for breathy, creaky, 
and modal voice. Classification rates as high as 90% 
were achieved using the first 5 principal components. 
The most salient acoustic correlates for creaky voice 
are, compared to other categories, higher mean H2*, 
lower mean f0 and HNR below 500 Hz, and for 
breathy voice, higher mean H1* and spectral tilt 
measures such as H1*–A1* and H1*–H2*. 
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1. INTRODUCTION 

Variation in laryngeal voice quality, such as 
breathiness and creakiness, is abundant in speech. 
Voice quality may be used contrastively as in Jalapa 
Mazatec [1], enhance perceptual distinctiveness of 
other phonetic categories such as lexical tones as in 
White Hmong [2], or function as prosodic 
configurations such as phrase-final creak in various 
languages [3]. There is also evidence of 
sociolinguistic differences in voice quality (e.g. [4]), 
as well as speaker-specific variation which may be 
relevant to forensic speech science [5, 6]. 

Laryngeal voice quality has received increasing 
attention from the perspectives of articulation, 
acoustics, and perception in the past two decades.  
Phoneticians have been dedicated to searching for 
acoustic features that are capable of distinguishing 
modal, creaky and breathy voice (e.g. [7]). The two 
basic articulatory dimensions to laryngeal voice 
quality are the degree of constriction of vocal folds 
and aspiration noise [8], which can be captured by 
spectral tilt and harmonic to noise ratio (HNR) 

measures respectively as proposed in the 
psychoacoustic model described in [9]. For spectral 
tilt there are various proposed measures, of which the 
most common one is H1–H2 or the corrected H1*–
H2*[10], the difference in amplitude between the first 
and second harmonics, amongst other higher-
frequency slopes in source spectrum such as H2–H4, 
H4–H2kHz, and H2kHz–H5kHz. An alternative set 
of measures of spectral tilt include H1–A1, H1–A2, 
H1–A3 varying in their harmonic bandwidth 
depending on the formant frequencies, or in other 
words, vowel quality. These may also correlate with 
the source spectral tilt measures. In addition to 
spectral tilt and HNR measures, other proposed 
acoustic correlates of laryngeal voice quality in the 
literature include corrected amplitude of individual 
harmonics such as H1, H2, and H4, cepstral peak 
prominence (CPP) [11], f0, formant frequencies and 
bandwidths [12].  

Although it has been found that both the source 
and filter characteristics provide important cues for 
phonation contrasts [9, 13, 14], the influence of the 
filter on laryngeal voice quality is often ignored. The 
correlations among the selected acoustic measures are 
also often neglected, which impacts the 
interpretability of statistical models.  

This paper revisits the acoustics of laryngeal voice 
quality via an interpretable classification algorithm 
whereby combinations of acoustic features are used 
to predict laryngeal voice quality. We examine the 
contributions of a wide range of the proposed acoustic 
measures (including features associated with the filter) 
in distinguishing laryngeal voice quality. While many 
studies measured voice quality from sustained vowels 
(e.g. [15]), this study utilises continuous speech, 
which better represents the dynamic attributes of 
voice in speech. 

2. DATA 

This paper reports on a subset of the available 
materials from a bespoke corpus, collected as part of 
an on-going project, containing high quality 
recordings of experienced phoneticians in various 
vocal conditions.  
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2.1. Participants 

Data from four male adult speakers were included in 
this study (P1-P4). They are all experienced 
professional phoneticians. 

2.2. Procedure 

Each participant read the first two paragraphs of The 
Rainbow Passage in twenty-four vocal conditions, 
varying laryngeal and supralaryngeal voice quality 
settings, as well as accent guises and other vocal 
changes (e.g. holding a pen between their teeth). Each 
vocal condition was repeated three times non-
consecutively within a recording session. All 
participants took part in three sessions which were at 
least a week apart. Thus, each vocal condition has 3*3 
= 9 repetitions, and the recording of each repetition 
was saved as a PCM WAV file. The repeated design 
better captures intra-speaker variation. This paper 
reports only on the modal, breathy, and creaky voice 
conditions.  

2.2. Recordings 

The recording sessions were conducted in an 
anechoic chamber at the University of York. Each 
participant wore a DPA omnidirectional headset 
microphone on the right side of their face. The 
recording was made on a single channel at a sampling 
rate of 48 kHz and 24-bit quantization using a Zoom 
F8n recorder.  

3. METHOD 

This study employs multinomial logistic regression to 
predict the phonation types with a wide range of voice 
source and vocal tract features. The preprocessing, 
data exploration and analysis were implemented in 
MATLAB, R, and Python, and the scripts are 
available as supplemental materials1. 

3.1. Acoustic Measurements 

Using VoiceSauce [16] in MATLAB, 29 acoustic 
features (see Table 1) were extracted every 25ms 
frame with 10ms frame shift for all audio files. All 
spectral magnitude measures were corrected using f0 
and formants. Both f0 and formants were estimated 
using the Snack algorithm [17]. The f0 extraction 
range set from 40 Hz to 300 Hz, and four formants 
were tracked using the default setting with LPC order 
being 12 and pre-emphasis set to 0.96.  

Only measurements from voiced portions (f0>0) 
were included. Visual inspection of f0 tracking with 
spectrogram and waveform revealed that the f0 of 
each speaker did not exceed 230 Hz. Thus, measures 

of frames whose f0 was larger than 230Hz were 
considered tracking artefacts and were excluded. 

Each audio file is on average 29.04s in duration 
(SD = 3.77s) and evenly divided into six breath-
group-size [18] intervals of about 4.84s each. The 
mean duration of voicing portion of the intervals is 
2.4s (SD = 0.75s). For the analysis, the mean and 
standard deviation of measures of each acoustic 
feature over each interval were used. The division of 
intervals enriched the dataset, instead of using means 
and standard deviations for acoustic measures 
calculated across the entire sample of speech.  

There are, hence, 162 sets (9 repetitions of 3 voice 
qualities with 6 intervals per repetition) of measures 
for each speaker, and each set contains 58 measures 
(means and standard deviations of 29 features). 

Measure Explanation 
Spectral slope measures (dB) 
H1*, H2*, H4*, 
H2k* 

Amplitude of the first, second, 
fourth harmonic, and the harmonic 
nearest 2,000 Hz 

H1*–H2*,  
H2*–H4* 

Difference in amplitude between 
the first and second harmonics, 
second and fourth harmonics 

H4*–H2k* Difference in amplitude between 
the fourth harmonic and the 
harmonic nearest 2,000 Hz 

H2k*–H5k* Difference in amplitude between 
the harmonic nearest 2,000 Hz and 
the harmonic nearest 5,000 Hz 

A1*, A2*, A3* Amplitude of the first, second, and 
third formant 

H1*–A1*,  
H1*–A2*,  
H1*–A3* 

Difference in amplitude between 
the first harmonic and the 
harmonic closest to the first, 
second, and third formant 

Energy/Amplitude related measures 
HNR05,  
HNR15,  
HNR25,  
HNR35 

Harmonic-to-Noise Ratio for 0-
500 Hz, 0-1500 Hz, 0-2500 Hz, 
and 0-3500 Hz 

CPP Cepstral Peak Prominence 
Energy Root Mean Square (RMS) energy 
Vocal tract related measures 
F1, F2, F3, F4 First through fourth formant  
B1, B2, B3, B4 First through fourth bandwidth 
Glottal measures 
f0 Fundamental frequency (Hz) 

Table 1: Acoustic measures extracted from 
VoiceSauce. 

3.2. Multinomial logistic regression 

To learn the relationship between phonation types 
and acoustic features, we fitted multinomial logistic 
regression models with 𝑙!  regularisation, using the 
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LogisticRegression() function and SAGA solver [19] 
in Scikit-Learn Python library [20]. The 𝑙! 
regularisation shrinks non-significant coefficients to 
exactly 0 through penalising the absolute values of 
magnitude of coefficients during optimization, 
thereby reducing unnecessary acoustic measures in 
the final model. The predicted variable was one-hot 
encoded such that {breathy = 0, creaky = 1, modal = 
2}. All acoustic features were z-score normalised, 
since features measured at different scales might not 
contribute equally to model fitting and create a bias. 

3.3. Cross-validation 

Cross-validation is employed to evaluate model 
performance, given the small-scale dataset. This 
prevents model overfitting by partitioning a subset of 
data to validate the model prediction accuracy and 
utilise all the data both for training and for testing.  

In our implementation, two sets of cross-
validation were built. In set S, data from one speaker 
was singled out as a test set while the remaining data 
was used for training, and this process was repeated 
for every speaker. In set R, data from one repetition 
for all four speakers was held as a test set while the 
remaining eight repetitions were used for training, 
and this process was repeated for every repetition.  

Two metrics were used to measure the classifier 
performance:(1) accuracy, the percentage of correctly 
predicted phonation types in the test data, and (2) F1-
score, whether the model predictions are balanced 
across three predicted categories. An F1-score close 
to 1 generally means better classification.The average 
results of all iterations in cross-validation are reported. 

3.4. Dimensionality reduction 

Regression models with all 58 standardised acoustic 
features (base) as predictors were initially built. To 
simulate the chance level predictions, baseline 
models were also set up by randomly sampling 
predictions from a discrete uniform distribution of 
[0,2] and comparing them to true labels. The 
classification results are presented in Table 2.  

 Base models Random baseline 
Average Set R Set S Set R Set S 
Accuracy 0.98 0.79 0.32 0.34 
F1 score 0.98 0.78 0.25 0.27 

Table 2: Classification results of full models and 
random baseline models. 

The base models greatly outperformed the random 
predictions, indicating that there are statistical 
regularities between phonation types and these 
acoustic features. Set R has higher accuracy than Set 
S, suggesting that interspeaker variation is larger than 
intraspeaker variation in laryngeal voice quality. 

The base models, however, are not fully 
interpretable, as many of the features are highly 
correlated. Hence, we applied principal component 
analysis (PCA) to the acoustic features prior to 
logistic regression models, thereby removing 
multicollinearity between predictors, as PCA 
transforms a set of correlated variables into a smaller 
number of orthogonal variables. We built a pipeline 
chaining PCA and logistic regression to search for 
optimal parameters of PCA.  

 
Figure 1: The explained variance and mean classification 

accuracy across principal components (set R). 

We found that with the first five principal 
components, the classification accuracy consistently 
reaches over 80%, both for the R and S sets. In Figure 
1, the inclusion of the third component greatly 
increased the accuracy from below 60 % to close to 
80%. Hence, we transformed the data with the first 
five principal components and then used them as 
predictors in logistic regression (PCA models). 

4. RESULTS 

4.1. Classification 

The PCA models achieved good overall classification 
results as shown in Table 3, although the first five 
components captured only about 60% variability in 
the acoustic data. The confusion matrix2 from the 
classification indicates that breathy voice was 
distinguished from creaky voice with 100% accuracy 
(and vice versa). Here, we will focus on Set S models 
tested on unseen speakers. 

 PCA models  
 Set R Set S 
Avg. Accuracy 0.9 0.78 
Avg. F1 score 0.9 0.78 
Avg. Explained variance 0.62 0.63 

Table 3: Classification results of PCA models. 

The regression model coefficients for each 
principal component (PC) are listed in Table 4. PCs 
with larger absolute coefficients indicate their larger 
contribution to prediction. We can see that all five 
PCs contribute to the classification of laryngeal voice 
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quality, with PC1 and PC3 generally the most 
important variables.  

Set S PC1 PC2 PC3 PC4 PC5 
Breathy -0.96 -0.58 1.43 0 0.90 
Creaky 2.52 0 -2.86 0.93 -1.82 
Modal 0 0.29 0 -0.13 0 

Table 4: Model coefficients for one of the models 
in Set S. Insignificant coefficients were shrunk to 0 
by l1 regularization. 

In order to better understand how principal 
components predict each phonation type, we visualise 
the test data in the space of fitted PCs. Figure 2 shows 
the distribution of test set data (speaker P4; Professor 
Francis Nolan) in a two-dimensional space of PCs 
derived from the training data. The inspection of PCA 
transformed test data in Set S suggests that the first 
PC is crucial to separate creaky voice (green dots) 
from the other categories, while PC3 distinguishes 
breathy voice (orange dots) from the others. 

 
Figure 2: Two-dimensional projection of the test set data 
using  PCs from training set. 0, 1, 2 represents breathy, 

creaky, and modal voice respectively. 

4.2. Acoustic measures contributing to the PCA 

The results of section 4.1 can be made interpretable 
by examining the factor loadings, i.e. the correlation 
between PCs and acoustic features. Table 5 presents 
the key factor loadings for the first and third PCs from 
the data of the first three speakers, used as training 
data for classification of voice qualities for the test 
speaker P4 (Figure 2). Full factor loadings can be 
accessed in the supplemental materials3. 

In Table 5, PC1 negatively correlates with 
standard deviations of amplitude of harmonics, f0 and 
HNR mean measures, especially HNR below 500 Hz, 
and positively correlates with the mean measures of 
H2*, H4*–H2k*. The first component mainly captures 
f0 and amplitude or energy related measures, both in 
inharmonic and harmonic source, distinguishing 
creaky voice from other categories. PC3 correlates 
positively with spectral tilt means across all 
frequency bands H1*–A3*, H1*–A2*, H1*–A1*, H1*–
H2*, the mean amplitude of H1*, and the mean and 
standard deviation measures of first formant 
bandwidth, and negatively with HNR mean measures. 

In Figure 2, creaky voice tends to have higher PC1 
values, indicating, as might be expected, lower mean 
f0 and HNR measures, especially HNR below 500Hz, 
compared to others. That breathy voice tends to have 
higher PC3 suggests that breathy voice tends to have 
higher mean H1*, spectral tilt mean measures such as 
H1*–A1* and H1*–H2*, mean/SD of first formant 
bandwidth, and lower mean HNR measures, 
especially HNR below 2500 and 3500Hz.   
Set S PC1 PC3 
Positive H2* (0.14), 

H4*–H2K* (0.15) 
(mean)  

H1*, H1*–H2*,  
H1*–A1*,  
H1*–A3*,  
B1 (mean); 
B1 (sd) 

Negative f0, HNR05  
(mean); 
H1*, H4*, A1*, 
A3*, H2*, A2*, 
H2K* (sd) 

HNR35,  
HNR25,  
HNR15 
(mean) 

Table 5: Key acoustic measures for PCs (Training set: 
P1-P3; selected: absolute loadings >0.2 unless specified). 

5. DISCUSSION 

Laryngeal voice quality is manifested in multiple 
acoustic features, both source and filter measures. 
PCA reveals underlying patterns in the wide range of 
acoustic measures and provides a multidimensional 
description of the acoustics of phonation types. For 
instance, PC1 in the sample training set correlates 
positively with mean H2* and negatively with mean 
HNR <500 Hz and f0, assembling features potentially 
profiling creaky voice, while PC3 correlates 
positively with mean H1*, spectral tilt measures and 
B1, and negatively with HNR measures, which 
related to characterising breathy voice. The 
orthogonal nature of PCs might also provide insights 
into person-specific patterns, when test data of 
different speakers was visualised on the PC space 
learnt from the same reference set. 

6. CONCLUSION 

The study revisits the acoustics of laryngeal voice 
quality via a classification approach using PCA and 
logistic regression. Laryngeal voice quality was well 
differentiated using the selected acoustic measures. 
The average classification accuracy was 78% (Set S) 
and 90% (Set R); well above chance. Consistent with 
[13], lower mean HNR measures characterise breathy 
and creaky voice and our findings further suggests 
HNR measures at different frequency bands play a 
role in differentiating breathy voice from creaky 
voice. Other salient acoustic features include spectral 
measures H1*, H2*, H1*–H2*, and f0, B1.  
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_______________________________ 
1 The supplemental materials are available here: 
https://github.com/uoy-research/pasr-
output/tree/main/icphs_23_voicequality. 
2 Confusion matrices of models are presented in the 
supplemental materials. 
3 Section 4.2 mainly reported on one of the Set S 
models with the highest test score to demonstrate how 
to interpret the principal components. Due to limited 
space, results of other models can be accessible in the 
supplemental materials.  
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