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ABSTRACT 

We report our ongoing efforts towards the 

development of challenging speaker discrimination 

tests. Our goal is to establish highly sensitive tests 

that enable characterization of individual differences 

in voice processing skills. Such tools are required but 

lacking for the identification of so-called “voice 

super-recognizers” – individuals with superior voice 

processing ability – who could aid criminal 

investigations involving audio material. To find such 

individuals we manipulated test difficulty using an 

ASR and delta F0-based stimuli selection method. 

Independent groups of participants performed 2-

alternative forced choice voice discrimination tests of 

stimulus pairs selected either randomly, or 

systematically based on inter-item similarity. On 

average, performance was significantly higher for the 

prior (80.0%) as compared to the latter (68.8%) test. 

Thus, we have established a method to manipulate 

task difficulty in speaker discrimination tests. We will 

further validate and extend our method to include a 

wider range of audio material implemented as a 

within-subject design. 

 

Keywords: voice super-recognizers (VSR), speaker 

discrimination, forensic phonetics. 

1. INTRODUCTION 

In criminal proceedings with audio files as evidence, 

police and prosecution authorities can seek the 

assistance of forensic phoneticians. Recently, 

criminal cases with voice evidence have increased 

where forensic phoneticians are expected to analyse 

mounting volumes of data in ongoing police 

investigations. Scenarios such as potentially finding a 

voice in an extensive collection of case-relevant audio 

files are impossible to solve by applying traditional 

auditory-phonetic and acoustic methods within a 

reasonable time frame. Therefore, new techniques or 

approaches are required to deal with criminal 

investigations involving large numbers of audio files.  

One potential approach to this big data and time-

pressure dilemma is the employment of automatic 

speaker recognition (ASR) systems. They can rapidly 

calculate similarity scores or (log) likelihood ratios  

between large numbers of files. However, the 

performance of these systems is highly affected by 

the quality and the duration of the audio recordings 

[1] and humans have also been shown to outperform 

them in certain scenarios [2]. Therefore, ASR systems 

are typically used only alongside traditional methods 

in forensic casework [3]. If, after using ASR systems, 

forensic phoneticians must still analytically review all 

the ASR-generated results by applying auditory and 

acoustic methods, big data and time pressure of 

ongoing investigations still pose a significant 

challenge. We are therefore seeking additional 

solutions.  

Since the considerations above are not exclusive to 

auditory material, ongoing efforts from the domain of 

vision sciences may offer a solution. For the past 

decade, researchers have been investigating so-called 

“Super-Recognizers” (SR), individuals with 

untrained exceptional face identity processing 

abilities [4],[5]. As interest from international law 

enforcement agencies steadily increases [5], [6], so do 

reports of formal collaborations between researchers 

and police agencies who seek to actively deploy 

individuals due to an empirically documented unique 

ability [5].  

Notwithstanding that SR are a very recent 

phenomenon in the visual domain, we have adopted 

an interdisciplinary approach to determine whether an 

analogous superior ability also exists for the 

processing of voice identity. Our current definition of 

“voice super-recognizers” (VSR) describes untrained 

individuals with superior ability to efficiently process 

speaker identity consistently across input variations.  

This could manifest as highly proficient speaker 

discrimination and/or recognition across objectively 

challenging conditions associated with increased task 

difficulty. Such conditions could include, e.g., low-

quality audio material or high similarity of speakers’ 

voices. Following this definition, we currently 

envision the employment of VSR in post-processing 

of ASR-generated results in police investigations or 

intelligence gathering with big data cases (Figure 1). 
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Figure 1: Potential employment scenario  

of VSR. 

 

Given the nature of to-be-processed material, we 

recommend identifying VSR among police 

employees. 

One approach to identify VSR proposed by Jenkins et 

al. [7] is to test if the abilities of individuals who 

identified as visual SR, also extend to voice 

processing. 

Their participants completed the Bangor Voice 

Matching Test [8] (discrimination test), the Glasgow 

Voice Memory Test (recognition test) [9] and a 

bespoke Famous Voice Recognition Test [7]. The 

authors reported positive correlations between voice- 

and face processing and that some but not all 

individuals with superior face ability showed superior 

performance for voice processing. 

We sought to expand on this work and further explore 

the concept of VSR by developing tests incorporating 

a larger quantity of speaker identities while 

systematically varying task difficulty using automatic 

approaches.  

The current study proposes a method to control task 

difficulty by selecting voice stimuli based on within- 

and between-speaker similarity. We created a speaker 

discrimination test based on ASR-generated 

similarity scores, analogous to how we envision the 

employment of VSR to post-process ASR results. 

This provides the basis for creating a challenging test 

of speaker discrimination, which is the focus of the 

present work.  

1.1 Previous work 

To the best of our knowledge, the subject of superior 

voice processing ability, an umbrella term for various 

voice and speaker-related tasks, has been addressed 

in only a small number of studies so far [8]–[10]. 

Mühl et al. developed the aforementioned Bangor 

Voice Matching Test to assess voice discrimination 

abilities in a short and standardised screening test. 

While their research on speaker discrimination 

focused on assessing listeners’ abilities, other groups 

focused on factors influencing task difficulty [11]. 

Alongside ‘natural’ variations, such as speaking style 

that render speaker discrimination tasks more 

challenging, acoustic properties of voices and their 

correlation to listeners’ judgments in speaker 

discrimination tests have been investigated [12]. 

While speaker discrimination tests force listeners to 

make binary decisions, similarity ratings give more 

granular insights into the perceived similarity scale of 

voices [13]. As to the correlation between automatic 

and human similarity ratings, so far only phonetic 

features were investigated [14]. As far as we know, 

there is currently no research indicating that MFCC-

based ASR systems correlate with human speaker 

discrimination performance. Still, we suspect that 

stimulus pairs rated similarly by ASR systems will be 

harder to discriminate by humans.  

In the domain of human assisted speaker recognition 

(HASR), it was found that fusing machine-generated 

and human results showed improvements [2], [15], 

[16]. These findings provided inspiration for how 

VSR could be employed in investigative case work 

for post-processing ASR system-generated results. 

Contrary to some of the analysed schemes, we 

envision the employment of lay people only in the 

investigatory stage of cases. 

2. METHOD 

Different factors influence the difficulty of a speaker 

discrimination task. For this test, we only investigated 

and tested “voice-inherent factors”, such as two 

voices sharing similar frequency properties [17], by 

using ASR-derived similarity scores and delta F0 

values to find challenging stimulus pairs with low 

within-speaker, and high between-speaker similarity. 

We have refrained from making the experiment more 

difficult by addressing “technical factors” (such as 

recording devices) other than re-sampling the stimuli 

down to 8 kHz. For future experiments, we also plan 

to implement “acoustic environment factors”, such as 

background noise, reverberation etc. We only tested 

short stimuli of around 1.2 seconds as Bricker and 

Pruzansky have shown that participants’ 

discrimination accuracy increased with longer speech 

sample duration [18]. 

2.1 Corpus and participants 

We used stimuli from the TEVOID corpus (Temporal 

Voice Idiosyncrasy, [19]), initially created to 

investigate speakers’ temporal features in short 

sentences. We further processed the studio quality 

recordings that consist of read sentences by native 

Zurich German speakers (male and female) as 

described below. The study was run with participants 

from different classes of police cadets in Zurich, 

Switzerland. 

2.2 Stimulus selection 

As in a possible scenario where VSR would assist in 

a real police case, we combined an ASR system to 

pre-process the data for the speaker experiment. The 

goal of using an ASR system was to have a fast 

method to select similar stimuli from large corpora. 
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Yet, most ASR systems show high equal error rates 

with short speech sequences since there is insufficient 

information to build an adequate speaker model [2], 

[20]. To mitigate this challenge, we worked with a 

state-of-the-art speaker comparison model for short 

stimuli, which won the “Short-duration Speaker 

Verification Challenge 2020” [21],[22]. This 

ECAPA-TDNN algorithm (release 05-03-21) is 

open-source from Speechbrain [23] (version 0.5.10) 

and was included in our stimuli processing pipeline 

implemented in Python (version 3.8.12).  

To select the stimulus pairs for the discrimination 

experiment, we first loaded all stimuli from the 

corpus using the AudioNormalizer and created 

embeddings using the EncoderClassifier classes of 

Speechbrain [23]. We then calculated pairwise cosine 

distances between the embedding vectors to obtain a 

full similarity matrix for all stimuli. We use the pairs 

with the lowest within-speaker and the highest 

between-speaker similarity scores. No likelihood 

ratios were calculated, the system was solely used on 

a score basis.  

It is noteworthy that in the MFCC-feature extraction 

process, F0 information is neglected [21],[22]. 

However, it has been found that mean pitch 

influences listeners’ judgements of voice 

dissimilarity [17]. We therefore measured and 

averaged the fundamental frequency (F0) of all audio 

samples for each speaker and calculated “delta F0” 

values for all speaker pairs. After investigating the F0 

distribution of male and female voice identities in 

TEVOID, we only considered stimulus pairs for 

speakers with a delta F0 of 10 Hz or less for female 

speakers and 15 Hz for male speakers.  

We then sorted all stimulus pairs by ascending cosine 

similarity and started picking pairs from the top of 

this list. A maximum number of four stimuli per 

speaker were included for different-speaker and 

same-speaker scenarios each. Two speakers only 

appeared in a pair with each other up to two times. 

The two stimuli of a pair never originated from the 

same sentence, and each selected audio stimulus only 

appeared once in the whole experiment. We 

performed all the above processing steps separately 

for male and female speakers and used ten speakers 

per gender. Overall, the experiment included 20 

same-speaker (SS) and 20 different-speaker (DS) 

trials per gender. 

2.3 Stimulus processing 

To harmonise the audio file durations, which varied 

inter-individually with speakers’ speech tempo, we 

normalised the selected stimuli by cutting the files to 

a duration of around 1.2 seconds, chosen from the 

centre of the audio file. We normalised the amplitude 

to 65 dB (RMS), but not the number of syllables 

contained in one snippet. For post-processing the 

selected files, we applied an amplitude smoothing 

function with the software Praat [24] to make the 

starting and ending of the stimuli less abrupt. In 

addition, we removed non-speech sections before and 

after the utterances.  

Furthermore, we down-sampled the resulting stimuli 

to 8 kHz to make them more similar to a frequently 

observed setting in forensic casework (i.e. telephone 

transmitted speech). Finally, we concatenated each 

stimulus pair in random order with a pause of one 

second between the stimuli and saved them as MP3 

files.  

To validate our ASR and delta F0-based stimuli 

selection method, we implemented a second 

discrimination experiment where participants were 

presented with randomly selected stimulus pairs of 

the same audio quality, length, and out of the same 

TEVOID-corpus. We followed the same rules 

concerning the number of files per speaker and the 

spoken sentences. This random discrimination test 

was assessed with two unique groups of police cadets. 

2.4 Experimental design 

We used the Gorilla Experiment Builder [25] to 

create and host the speaker discrimination 

experiment. Pairs of audio stimuli (number of pairs = 

80) were presented sequentially to the participants in 

random order, who had to indicate whether both were 

uttered by the same speaker or by two different 

speakers. We ran the two experiments on different 

classes of police cadets on different days. Participants 

completed the experiment onsite. They all used the 

same headphones. 

3. RESULTS 

We initially assessed the discrimination performance 

of the ECAPA-TDNN model on the original stimuli 

of the complete TEVOID corpus. The model showed 

a ROCCH EER [26] of only 0.92% for males and 

2.13% for female stimuli. We compared this EER to 

the one of a x-vector-based system validated for 

forensic case work that showed a ROCCH EER of 

16.1% for the males and a ROCCH EER of 16.5% for 

the female stimuli.  

The results of the speaker discrimination tests are as 

follows: In the randomly combined stimulus pairs, 

participants, on average, correctly classified 80.0% of 

the pairs (38 participants with 80 stimulus pairs each), 

whereas in the challenging discrimination task, 

participant groups only classified 68.8% of the pairs 

correctly (52 participants with 80 stimulus pairs 

each). This observed difference is significant 

(p<0.01, two-sided t-test). The distributions of correct 
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answers per experiment are visualised in Figure 2. 

The challenging task was run with three groups of 

police cadets, of which the first scored 68.1%, the 

second 69.1% and the third 70.3% of the pairs 

correctly. 

 

4. DISCUSSION 

The presented study aimed to implement and test a 

new stimulus selection method to control voice-

inherent speaker similarity in a discrimination task. 

We did so by employing an ASR model combined 

with delta F0 values for objective stimulus selection. 

The used ECAPA-TDNN model was not yet tested on 

forensic data sets or in a forensic casework scenario 

as suggested by Morrison and Enzinger [27]. Yet, it 

performed best in short speech stimuli discrimination 

and showed very low EER on our stimuli. Also, we 

did not employ the model to perform any forensic 

speaker discrimination but only to select difficult 

stimulus pairs to be used in our test. In future 

experiments, we will calibrate the ASR-system and 

try to make the stimuli as similar as possible to a 

forensic scenario. 

So far, we ran our experiment on three groups of 

police cadets that scored similarly regardless of group 

size or composition. To further validate our method, 

we implemented and tested a second experiment with 

randomly chosen stimulus pairs which was tested on 

two additional independent participant groups. When 

comparing the results between random stimulus 

selections and stimulus selections based on our new 

method, the test designed using our method turned out 

to be significantly more challenging. This finding 

supports our hypothesis that discrimination task 

difficulty can be controlled by selecting stimulus 

pairs based on ASR system scores and delta F0 

values. 

The current test did not yet show any distinct superior 

group of participants in the distribution of scores. 

However, one could argue that the participants at the 

high end of a distribution of voice discrimination 

and/or recognition abilities could possibly be VSR. 

VSR capabilities could manifest as highly proficient 

speaker discrimination and/or recognition across 

objectively challenging conditions associated with 

increased task difficulty. Whether the best performers 

of our test are in fact VSR, will have to be evaluated 

after they have completed additional challenging and 

forensically relevant tests. However, we consider a 

challenging discrimination test like ours a necessary 

precondition for identifying VSR if they do, in fact, 

exist.  

VSR could pave the way for human-centred 

approaches in biometrics and forensics with 

implications for law enforcement. Despite currently 

non-existent research regarding VSR, their discovery 

and employment in actual cases receive interest in the 

community. Currently, we can envision VSR 

deployment for postprocessing of automatically 

generated results in investigatory stages of a case 

involving large amounts of audio files. Identification 

of VSR will ultimately provide the needed basis for 

further research, including the benefits of their 

employment for criminal investigation, and the neural 

basis of their abilities. Finally, fusing the abilities of 

VSR and state-of-the art ASR systems could further 

improve voice processing performance. 

We plan to repeat our experiments with more 

participants and as a within-subject design. Alongside 

voice-inherent factors, technical and acoustic-

environmental factors will further be included in 

future tests, where we plan to extend our method 

beyond speaker discrimination to further test 

scenarios, such as one-to-many speaker recognition, 

sorting, or clustering tasks. Finally, our upcoming 

tests will include forensically relevant scenarios and 

stimuli to potentially find VSR best equipped for the 

employment in investigatory case work.  

  

Figure 2: Test result of random (top) and score-

based (bottom) stimuli selection method. 
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