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ABSTRACT

Whispered speech is characterised by a noise-like
excitation that results in the lack of fundamental
frequency. Considering that prosodic phenomena
such as intonation are perceived through f0
variation, the perception of whispered prosody
is relatively difficult. At the same time,
studies have shown that speakers do attempt
to produce intonation when whispering and that
prosodic variability is being transmitted, suggesting
that intonation "survives" in whispered formant
structure.

In this paper, we aim to estimate the way in which
formant contours correlate with an "implicit" pitch
contour in whisper, using a machine learning model.
We propose a two-step method: using a parallel
corpus, we first transform the whispered formants
into their phonated equivalents using a denoising
autoencoder. We then analyse the formant contours
to predict phonated pitch contour variation. We
observe that our method is effective in establishing
a relationship between whispered and phonated
formants and in uncovering implicit pitch contours
in whisper.
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1. INTRODUCTION

Pitch is an important feature in the encoding of
prosody, and its variations over time are a defining
characteristic of intonation. In whispered speech,
fundamental frequency is not present in the signal
as the glottis remains open and the vocal folds
do not vibrate. In principle, this should prevent
transmission of pitch and intonation via whisper.

However, several studies [1, 2, 3] have found
that listeners perceive pitch and intonation effects in
whispered speech. Similarly, it is evident that the
whispered signal contains properties that offer cues
to intonation.

*This work was supported by the Swedish Research Council
grant no. 2017-02861 “Multimodal encoding of prosodic
prominence in voiced and whispered speech”.

Formant raising, particularly of F1, is a well-
attested characteristic of whispered speech relative
to phonated speech [4, 5, 6]. The higher formant
frequency positions in whisper may be related to a
more open configuration of the vocal tract similar
to that found in e.g. Lombard speech [6, 4].
In our previous work, we showed that the jaw
is more open in whispered, relative to phonated,
vowels in Swedish, supporting the hypothesis that
whisper is a form of hyperspeech. However,
others have suggested that formant raising is related
to whispered pitch perception: [3] showed that
listeners were able to discriminate between low
and high-pitched whispered vowels on the basis of
higher F1 and F2. Additionally, raised formant
frequencies seem to connect to prosody-related
laryngeal activity [5]. [7] showed that in whispered
speech production, laryngeal movements associated
with pitch changes remain comparable to those
in phonated speech. This indicates that prosody-
related oral cavity shape modification takes place in
whisper and hence is able to change the acoustics of
the noise-like excitation travelling through the vocal
tract - allowing for pitch inference in perception.

The harmonic relation between f0 and formants
has also been exploited in speech technology.
In voice conversion systems, i.e. systems that
reconstruct phonated speech from whispers, some
solutions have tackled the problem of the missing
f0 by creating harmonic excitation for whispered
speech using generative adversarial networks [8, 9].
[10] showed promising results by adding an artificial
pitch model to formant structure.

In the present paper, our process runs somewhat
in the opposite direction: we first aim to learn
from a) the relationship between f0 and formants in
phonated speech and b) its connection to the spectral
properties of whispered speech. To this end, we
present a machine learning method that models the
variation in f0 present in phonated speech through
the variation in whispered formant values. One
goal is to use these relationships to uncover and
understand the "implicit" pitch contour in whisper
that allows for the perception of prosody in the
absence of f0. The other is to support technological
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Figure 1: Steps of the proposed method. Red
ellipses represent the implemented methods and
white boxes represent the available data in each
step. Dashed lines stand for the training process.

applications such as voice conversion.

2. METHOD

2.1. Data

In this work, we use the CHAINS dataset [11],
which contains paired recordings in both phonated
and whispered speech. CHAINS contains data from
20 male and 16 female speakers with Irish (28)
and American (8) accents. The dataset consists
of read sentences and text fragments in different
speech modes such as natural phonated and whisper.
We use a subset of CHAINS with paired phonated
and whispered sentences and analyse only vocalic
phonemes. We transcribed the phonated audio
samples using a Wav2Vec2 model [12] and copied
the transcriptions into the whispered equivalents.
The data was then labelled using the Montreal
Forced Aligner [13] with a pre-trained model for
American English. We observed that function word
reductions produced event sequence mismatches
between phonated and whispered pairs. They were
subsequently removed from the analysis yielding
an exactly matched dataset of 7549 phonated and
whispered vowel phonemes.

2.2. Feature extraction and preprocessing

We extracted f0 and formant contours from vowel
phones. F0 values were extracted using Praat, with
a time step of 0.01 s and using a pitch floor and
ceiling of 75 and 300 Hz respectively. To extract
the formant contours, we used the Burg method
in Praat with a time step of 0.01 s, a 0.025 s
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Figure 2: Vowel space representing F1 vs F2 for
the vowel sounds [a, E, i, O, u] in phonated (blue)
and whispered (red) speech and ellipses for their
standard deviation.

long analysis window and the maximum number
of formants set to 5. Pre-emphasis was applied
over 50 Hz. The formant ceilings were initialised
to 5000 Hz for male speakers and 5500 Hz for
female ones and optimised using the Escudero’s
method [14]. In order to normalise the length of each
segment, we defined evenly distributed observation
points every 10% of the total duration of the phone.
The contour measurements corresponding to 0%
and 100% were then discarded to avoid instabilities
due to formant transitions between phones, resulting
in 9 measurement points that define the pitch and
formant contours. To reduce speaker variability in
the formant contours, we normalised the data for
each speaker following the Lobanov’s normalisation
method [15], where the data presents zero mean
and unit variance with respect to its corresponding
speaker. Additionally, pitch contours are also
normalised to zero mean and unit variance relative
to each speaker.

2.3. Whispered pitch prediction

We propose a machine learning method to estimate
the "implicit" f0 contour in whisper from whispered
formant structure. The two-step method is depicted
in Figure 1. In the first step, we leverage
the relationship between whispered and phonated
formants residing in paired phones to provide a
de-noised representation of the whispered formant
frequencies. In the second step, we predict
implicit, whispered f0 contours by modelling
the corresponding phonated f0 with the denoised
formant representations.
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2.4. Formant denoising

We assume that whispered formant structure is
strongly correlated to its phonated equivalent.
With the difference that in whisper, the formant
frequencies are raised and the spectral envelope
peaks are flatter manifesting a noisier behaviour.
The vowel spaces obtained from the current dataset
are presented in Figure 2. A high variance in
some F1 values can be observed due to the scarce
representation of some phones in the dataset. The
effects of whispered speech are reflected as an
increase in the values of F1 and F2 and a higher
variance in whispered, relative to phonated, formant
values.

Hence, we consider whispered formant
contours as a noisy representation of phonated
formants and propose a denoising strategy to
"transform" whispered formant contours to
phonated equivalents. For this purpose, we use an
autoencoder [16] that learns higher-order statistical
information from the formant contours. Using
whispered-phonated formant pairs as input and
output of the model, we aim to map the contours
from whispered speech to the formant contours of
the same phones in phonated speech.

The machine leaning method consists of an
symmetric encoder-decoder structure. Three 1-
D convolutional layers are used as filters over
the time-dependent features (16 channels, kernel
length of 3). These layers, plus a fully-connected
layer, generate encoder embeddings (18-sample)
from whispered formant contours. The decoder uses
three transposed convolutional layers to invert these
embeddings into phonated speech formants.

We have observed that most of the contours in the
data do not present significant variations. This might
introduce bias in our network towards a constant
value in the formant and pitch contours. In order to
maximise the similarity with the target contour, we
choose a different loss function: the cosine distance
between target and predicted contours, such that:

(1) Lcos =− 1
N

N

∑
i=0

ŷi · yi

||ŷi||2||yi||2
where yi and ŷi stand for the target and denoised

formant sequences of the ith sample and · represents
the dot product between the two vectors.

The correlation coefficients for F1, F2 and F3 are
presented in Table 1. We can observe that, while
the correlation between phonated and denoised
formant contours is improved for F1, F2, the network
degrades the correlation for F3 values. Therefore, we
chose to apply denoised F1 and F2, while the contour
of F3 is used unmodified in the next step.

2.5. Implicit f0 prediction

The second step in the method is a sequence
prediction model that estimates the "implicit" f0
contour based on the denoised contours of F1, F2 and
(unmodified) F3. This works under the assumption
that the f0 contour in the phonated data is related to
the one "implied" in the whispered data. Admittedly,
modelling the exact values of a non-existing pitch
signal from formant contours is a challenging task.
Therefore, this model focuses on estimating the
relative changes in the pitch contour that represent
intonation variability.

We use a recurrent neural network (RNN), a
deep learning method that is especially efficient
in uncovering temporal dependencies within
sequences. Considering the temporal dependencies
in the formant and f0 contours, a sequence-to-
sequence model [17] should be particularly useful
in modelling dependencies within and between
dynamic contours. The input formant contours are
processed by two bi-directional LSTM layers [18]
with 4 hidden units, resulting in a sequence with
8-dimensional features. The output sequence is then
generated with a fully-connected layer that maps the
corresponding 8 features to the target pitch values.

Similarly to the formant denoising, we require
a function that will maximise the similarity to the
target sequence. The cosine distance can be seen
as a normalised correlation, thus providing a better
approximation to the sequence shape than mean
squared error (MSE). Additionally, in order to also
approximate the actual pitch values of the target, we
will also include MSE in the loss function. The
resulting loss function is then a combination of MSE
and cosine distance:

(2) Lseq =
1
N

N

∑
i=0

|ŷi − yi|2 −
1
N

N

∑
i=0

ŷi · yi

||ŷi||2||yi||2
.

Both the denoising and prediction models were
trained over 300 epochs with an Adam optimiser and
a learning rate of 10−4. Additionally, a recurrent
dropout of 0.4 was added in the training loop to the
LSTM layers of the f0 prediction network.

3. RESULTS
First of all, our results show that we were able
to successfully leverage the close relationship
between whispered and phonated speech to de-
noise whispered formants. Table 1 shows that de-
noised whispered formant contours exhibit a higher
correlation with their phonated counterparts. The
greatest improvement can be seen in F1, known to
exhibit the greatest difference between phonated and
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Table 1: Pearson’s correlation coefficient of
whispered and denoised formant contours with
respect to phonated ones.

Formant Whispered Denoised
F1 0.19 0.34
F2 0.44 0.47
F3 0.26 0.16
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Figure 3: Denoised formants from whispered
contours with respect to original values.

whispered speech [4, 5, 6]. In Figure 3, we present
several examples of the denoised formant contours
in which the denoising model acts as a smoothing
function. It is evident that the cosine similarity
loss function allows us to closely estimate formant
frequency contours in stationary vowel intervals
found in the CHAINS corpus. Where the network
fails is in some extreme cases with high contour
variability, which may be due to various factors such
as formant tracking errors, residual influence of the
flanking phones etc.

Second, the measured error and correlation values
in the pitch prediction step are summarised in
Table 2. The refined pitch contour (RPC) from [10]
is used as baseline. Our model obtains a positive
correlation (Mean r = 0.56, SD = 0.3) between
predicted and target contours that allows to generally
follow the target pitch. Some examples of the
resulting mapping between predicted and phonated
contours can be observed in Figure 4. We see a
correct direction of the trend in most cases. We also
compare the absolute difference between the mean
f0 frequencies. Regarding comparisons to the RPC
baseline, while the LSTM shows improvement in
several individual cases, the average performance
is similar to the baseline in correlation and error
values. This leads us to believe that a more complex
system such as LSTM would benefit from using
additional input features supplying information
beyond the minimalistic formant set.

The absolute error from the predicted f0 presents
an average value of 38 Hz, with a standard deviation
of 24 Hz. The number of different speakers

Table 2: Absolute error and correlation of implicit
f0 prediction from the refined pitch contour (RPC)
estimation [10] and the proposed LSTM-based
network with respect to phonated f0.

Method RPC [10] LSTM
Mean St. Dev. Mean St. Dev.

Error (Hz) 40 27 38 24
Correlation 0.55 0.3 0.56 0.3
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Figure 4: Predicted implicit f0 contour values
compared to the original contours.

(36) in this data was high and this error can
be explained by the impact of speaker variability.
This estimation could be improved by considering
speaker-dependent features or tuning the model
specifically for each speaker.

4. CONCLUSION

In this work, we have presented a machine learning
method that estimates implicit f0 contours from
formant contours in whispered vowels. Our models
have shown that it is possible to uncover an implicit
f0 trajectory in whisper, via its phonated equivalent,
from F1, F2 and F3 contours only.

In future lines of work, we will apply a
speaker-dependent model. Our results show
that the variability inherent in the 36 speakers
modelled in this data has an influence on the
f0 prediction. Additionally, we would like to
incorporate information on the analysed phones and
their context into the formant analysis and pitch
estimation. The present models showed promising
results even before this variability was taken into
account and we expect that adding the additional
features will decidedly improve performance.

This result will allow us to observe variations
in perceived pitch and provide an improved
analysis of intonation in whispered speech. The
implementation of modern methods to uncover
implicit pitch in whisper will also lead to
developments in voice conversion systems.
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