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ABSTRACT
The use of creaky voice, or vocal fry in speech
has been extensively studied for its linguistic,
paralinguistic, and sociolinguistic functions.
However, much of the existing research on this topic
is fragmented and often contradictory. In order to
gain a deeper understanding of the communicative
functions of creaky voice, we propose the use
of comparative perceptual studies with natural
sounding speech synthesis. We present a neural
speech synthesizer that produces highly natural-
sounding synthetic speech with controllable creaky
voice styles. In a subjective listening experiment,
speech experts were able to identify the presence
and intensity of creaky voice produced by the
synthesizer. Our results suggest that neural speech
synthesis can be a valuable tool in furthering our
understanding of the communicative functions of
creaky voice.
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1. INTRODUCTION
Creaky voice, also known as vocal fry, has been the
subject of numerous linguistic, extralinguistic, and
sociolinguistic studies in recent years. However,
the diverse uses of creaky voice have often led
to inconclusive results. Phonetically, creaky voice
can refer to several types of voice production,
including a low, irregular pitch with a low spectral-
to-noise ratio [1]. It has a weaker first harmonic,
as well as low harmonic differences, particularly
between the first and second harmonic. There
has been an increase in both intra-speaker usage
of creaky voice in Finnish [2] and inter-speaker
use in American English and Hiberno English,
particularly among young women [3, 4, 5]. In terms
of linguistic function, creaky voice varies widely
across languages and can serve pragmatic functions
such as turn-yielding in Finnish [6], signalling a
phrase boundary for English [7], as well as semantic
functions like providing an acoustic cue for tone in
Vietnamese [8]. Creaky voice can be used to convey

a wide range of attitudes and affective states [7, 9]
including boredom [10], hesitation [11], sarcasm
and disgust [12], and can signal romantic intentions
[13]. However, not all of these results appear to
be simple one-to-one mappings, with [9] pointing
out that more research is needed to elucidate the
relationship between creaky voice and affective
state.

The sociolinguistic aspects of creaky voice for
English also paint a complex and often contradictory
picture. Extensive use of creaky voice carries
strong social signals [14], and creaky phonation can
be distinguished equally well for male and female
voices by naive listeners. Despite the absence of
gender disparity in the identification of creak, there
appears to be a gender difference in the perception
of it [3]. While earlier research indicates that the
production of creaky voice by American women was
perceived as “professional” and “urban-oriented”
[15], more recently the perception of creaky voice
has become overwhelmingly negative. In [3] vocal
fry is identified as potentially harmful to women’s
career prospects.

The increased frequency of the occurrence of
creaky voice in English, the large number of creaky
voice functions, and lack of unequivocal results
with regards to the sociolinguistic aspects of creaky
voice highlight big gaps in the current research.
This is exacerbated by the absence of a method to
reliably and systematically produce creaky synthetic
speech. We therefore propose a method that
controls the synthesis of creaky voice ito facilitate
systematic research into the sociolinguistic aspects
of creaky voice. We modified a neural speech
synthesizer [16], which is itself a modification of
[17], to explicitly model the (non)presence of creaky
voice. A corpus that extensively contains creak
was analyzed for frame-level creaky phonation
using DeepFry [18]. The frame-level creakiness
annotations were aligned with word-level transcripts
from the Montreal Forced Aligner (MFA) [19]. Two
types of creak, stylistic creak and end-of-turn creak
were chosen for a phonetic analysis, as these types
commonly occurred in the corpus. In the analysis,
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the creaky voice from the corpus closely resembled
the synthesized creak for both types. Experts were
asked to examine the word-level location of creaky
phonation, and rate its intensity in a subjective
listening experiment. While [16] implicitly model
creaky voice in speech synhtesis, this is the first
paper to explicitly model creaky voice using neural
speech synthesis.

2. METHOD
2.1. Data
We used two speech corpora to train our models:
RyanSpeech [20] and TSGD [21]. The RyanSpeech
corpus is a scripted conversational corpus that was
used for base training the speech synthesis model. It
consists of 10 hours divided into 11,279 utterance
spoken by a male speaker of American English
speaking in a conversational style. The speaker
reads aloud real-world conversational settings, task-
oriented dialogues, supplemented by a selection
of LibriTTS excerpts. This corpus contains only
minute levels of creaky phonation.

Secondly, we used the audio recordings of the
TSGD corpus [21], which were denoised using [22].
The corpus features a male speaker of Hiberno
English and consists of 25 unscripted monologues
of spontaneous speech of approximately 10 minutes
each. The monologues are delivered in a colloquial
style, and according to our observations the speaker
makes extensive use of creaky phonation: as a
stylistic feature to convey e.g. disinterest, as a
phrase-final marker, and as a speech planning tool
to conserve breath at the end of a respiratory cycle.
The audio was transcribed and processed identically
to [23, 24] by segmenting the corpus into breath
groups, i.e. speech segments occurring between two
breath events. The breath groups were combined
into overlapping breath group bigrams to create
audio files of up to 11 seconds long [25].

2.2. Creak detection
DeepFry, a neural network-based identification
method for creaky voice was used to obtain the
values to quantify creakiness [18]. It was chosen
due to its substantially higher recall and comparable
precision compared to other methods. Utterances
which could not be parsed by DeepFry were
excluded from further analysis. After the creak
locations and durations were obtained, we used
MFA to retrieve word duration alignments, which
were used to calculate the percentage of creaky
phonation per word, a measure we refer to as creak
value. The creak values were used as additional
input for the TTS model during training.

Encoder
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Figure 1: The model architecture
2.3. Model architecture
For the creaky voice synthesis, we modified an
existing prosody-controllable sequence-to-sequence
neural TTS architecture presented in [16], itself a
modification of the TTS engine proposed by [17].
This architecture features an encoder-decoder model
based on Tacotron 2 [26], while using a left-to-
right no-skip neural Hidden Markov Model (HMM)
to generate the alignments for the phone durations.
The system by [16] allows for control of prosodic
features such as f0 and speech rate on an utterance
level. In order to achieve fine-grained control
of voice quality rather than prosodic features, we
modified the prosodic feature encoder from [16] to
take word-level creak values as input, which we
call creak encoder. The word-level creak values
between 0 and 1 were standardized using the corpus-
level mean and standard deviation, in order to create
a more learnable distribution, and were copied for
each phone. Copying the creakiness value for each
phone instead of only the voiced phones creates
a more general conditioning that allows the deep
learning alogrithm to capture the general patterns of
creaky phonation. In order to match the embedding
size of the phone embeddings, the standardized
values were passed through a feed-forward layer
into a 512-dimensional control space. We used
a two-step conditioning of the phone embeddings.
First, we added the creak value projections to
the output of the encoder. Secondly, we used a
skip connection that appends the standardized creak
values to each dimension of the decoder input that
defines the final states of the HMM for more robust
control (Figure 1).

2.4. Experimental setup
For the experiments, we trained a speech synthesizer
using the speech corpora with creak annotations. As
the TSGD corpus is too small for training a stable
voice, we base-trained a voice on the RyanSpeech
corpus for 28k iterations to increase the synthesis
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stability before transfer learning on the TSGD voice
for 4k iterations to learn the voice quality and creaky
voice. Training on RyanSpeech does not change the
voice quality after finetuning on TSGD. To analyze
the synthesized creaky phonation, we performed
two experiments: an acoustic analysis in which
the creaky phonation present in the corpus and the
creaky phonation produced by the synthesizer were
compared, and a subjective listening test for which
phoneticians and speech technologists were asked to
mark the location and intensity of creaky phonation.
To facilitate the comparison of the location of the
creaky phonation for each condition, we divided
each sentence in quarters based on the word count.
This division was not visible to the participants. We
compared the ratings for the general intensity of the
creaky phonation by comparing the distribution of
the intensity of the creak for the full utterances per
condition. The location of the creaky phonation
was compared by analyzing the creak ratings for the
words in each quarter.

3. EXPERIMENTS
3.1. Acoustic analysis of synthesized creak

In order to compare the creaky phonation present in
the corpus with the synthesized creaky phonation,
two realizations of the /6/ vowel preceding /t/ from
the corpus with their synthesized equivalents were
examined, one with end-of-phrase creak as voice
quality and one with stylistic creak. The /6/ vowel
preceding /t/ was chosen, as it was a common
combination in creaky segments. We selected a
representative sample for each of the creak types and
synthesized a matching sample for each creak type.

Figure 2 shows spectra and waveforms for each of
the natural and synthesized vowels. Figure 2a and
Figure 2c show the natural and synthesized end-of-
phrase creak. The synthesized creak shows many
similarities with the natural creak in the spectrum,
both having weak harmonic structure and little
energy for the higher frequencies. The waveform
for the natural and synthesized end-of-phrase creak
show high aperiodicity, which caused pitch tracking
to fail for both the natural and synthesized speech.

For Figure 2b and Figure 2d, showing stylistic
creak on the other hand, the spectra show a clear
harmonic structure with weak fundamental (i.e. low
L1-L2). Additionally, it has more energy in the
higher frequencies compared to the aperiodic creak.
In terms of the waveform, both the natural and
synthesized creak are periodic, albeit in a more
regular manner for the natural creak. Pitch tracking
retrieved the correct values for both examples.

(a) The spectrum and aperiodic waveform of the natural /6/
with end-of-phrase creak from [21].

(b) The spectrum and periodic waveform of the natural /6/
with stylistic creak from [21].

(c) The spectrum and aperiodic waveform of synthesized /6/
with end-of-phrase creaky phonation.

(d) The spectrum and periodic waveform of synthesized /6/
with stylistic creak.

Figure 2: Spectra and waveforms for the natural
and synthesized creaky phonation.

3.2. Subjective listening test
To examine the perception of synthesized creaky
voice, 23 participants with expertise in phonetics or
speech technology were presented iteratively with
36 stimuli. These stimuli comprised 12 sentences
that were synthesized in three different voice
qualities: no creak, i.e. modal phonation, stylistic
creak with creaky phonation present throughout
the utterance, and end-of-turn creak with creaky
phonation present at the end of the utterance.
The participants were provided with word-level
transcripts for each stimulus and were asked to
rate the presence of creaky phonation using a
scale of 0—no creak, 1—creak, or 2—intense
creak. Additionally, the participants rated the
naturalness of the creaky phonation and could
provide comments at the end of the experiment.

Figure 3 shows an overview of the ratings given
by experts per creak condition per utterance quarter.
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Figure 3: The distribution of the experts’ ratings
per condition and per quarter as percentage of the
complete set of responses.

A Kruskal-Wallis H test showed significant results
between the conditions for both the full utterance
and for each quarter (all p < 0.0001). A post-
hoc Dunn test with Bonferroni adjustment showed
significant differences between every combination
of conditions for both the full utterance and for each
quarter (p< 0.0001). Stylistic creak was universally
rated the strongest for each category with a median
of 2 for the full utterance and each quarter (p <
0.0001). This was followed by end-of-phrase creak
which had a median of 1 for the full utterance, the
first, third, and fourth quarter, and a median of 0
for the second quarter, but had higher creak ratings
than the no creak condition for each category (p <
0.0001). No creak had the lowest creak rating, with
a median of 0 for full utterance and each quarter.

4. DISCUSSION
The acoustic analysis showed the synthesis of two
types of creak: an end-of-phrase creak and a stylistic
creak. The end-of-phrase creak was highly aperiodic
with slow and irregular vibration. This type of creak
is similar to non-constricted creak, as described by
Keating [1], which also exhibits low and irregular f0,
as well as slow irregular vibrations. It also showed
many similarities to creaky phonation present in the
corpus. The stylistic creak is more periodic, albeit

with a very low f0. This creak is similar to vocal fry,
as described in [1].

The ratings suggest that participants were
generally able to distinguish no creak, end-of-
phrase creak, and stylistic creak. Participants rated
utterances with no creak as not creaky. Stylistic
creak was rated as more intense and more present
throughout the utterance than end-of-phrase creak.

Twenty-two of the experts rated the creaky
phonation as natural or very natural for most
utterances. Six participants noted occasional
difficulty to distinguish creaky from modal
phonation for stretches of speech with a high speech
rate, partly due to vocoder artefacts that persist
due to the nature of the data. Three participants
highlighted the role of prosody in the rating of
the utterances; participants had more difficulty
distinguishing the phonation type for higher-
pitched utterances. Two participants mentioned
the influence of sociolinguistic and paralinguistic
aspects in their perception of creaky voice.

5. CONCLUSION
In this paper, we present a novel approach to
investigating the perception and communicative
functions of creaky voice by utilizing neural
speech synthesis. Our method opens up the
possibility to systematically test the perception
of creaky voice, and provides the opportunity
to clarify, disambiguate, and build upon existing
knowledge. We created a speech corpus with
automatic annotation of creaky voice and modified
a state-of-the-art speech synthesis architecture to
explicitly model creaky voice. The synthesizer
was trained on the speech corpus containing creak
annotations. A phonetic analysis demonstrated
that the two types of creaky phonation generated
by the synthesizer closely resembled their natural
counterparts found in the corpus. In a subjective
listening test, experts successfully distinguished
between the two creaky phonations and rated their
creakiness as natural or very natural. This work
reinforces the potential of neural speech synthesis
as a valuable tool for advancing our understanding
of the communicative functions of creaky voice and
its sociolinguistic implications.
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