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ABSTRACT

Trainable forced alignment offers feasible solutions
to document under-resourced languages. This study
aims to assess the performances of a Montreal
Forced Aligner (MFA) trained model using a
small scale of phonetically transcribed field data
in Squlig Atayal, an endangered Austronesian
language spoken in Taiwan. Evaluations were
implemented by comparing MFA outputs with
manual annotations based on (1) the accuracy
measurements on the interval boundaries of each
segment, and (2) the acoustic measurements, by
fitting the formant trajectories through the most
common vowels [a, i, u] with generalized additive
mixture models (GAMMSs). The results showed that
the general agreement reached 73.23% of accuracy
when with a tolerance of 30 ms misalignment,
and no statistical significance was found between
the formant trajectories except for F1 trajectories
of [a] and F2 trajectories of [u], revealing that
MFA outcomes were fairly consistent with manual
annotations when little but comprehensively labeled
data were provided.

Keywords: forced alignment, phonetic fieldwork,
language documentation, Squliq Atayal

1. INTRODUCTION

Recently, forced alignment (FA) systems have
been providing feasible solutions to enhance the
workflow of phonetic analyses. A prototypical
pipeline of FA includes (1) integrating the audio
files consisting of speech signals and the TextGrid
files containing orthographic transcriptions at the
utterance level to form a corpus. (2) Conducting
the alignment with the help of the acoustic model,
which calculates how likely a phone is given the
acoustic features; and the pronunciation dictionary,
which provides the reference for the grapheme-to-
phoneme (G2P) mapping. (3) Generating a time-
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aligned TextGrid file with both word and phone tiers
as the output.

Previous works on FA for under-resourced
languages often adapted existing acoustic models
made for well-documented languages [1, 2, 3, 4].
Nevertheless, the feasibility of such manipulation
may be reduced due to the mismatch of sound
inventories or orthographic systems between the two
distinct languages. In order to solve the cross-
linguistic issues, with the assistance of automatic
speech recognition (ASR) toolkits such as Kaldi [5]
or HTK [6], researchers can also consider training
a new, language-specific acoustic model based on
a relatively small corpus [2, 7, 8, 9]. Since
all phonological and phonetic clues of the target
language are embedded in a customized model, it is
likely to outperform the pre-trained model in terms
of the alignment results.

The overall performance of the FA can be
assessed once the alignment is completed. In
order to evaluate the FA outcomes, corresponding
manually-aligned data are required and treated as
the reference. There are several evaluation methods.
One of the most common and essential ways is to
measure the agreement (in percentage) at the onset
and offset boundaries [1, 3, 4, 7, 8], which refers
to the proportion of the FA and manual boundaries
from the same segment that agree within a given
threshold of tolerance (in ms). Intuitively, the larger
the threshold, the better the agreement.

Alternatively, other studies proposed that such
temporal-based accuracy measurement of the
alignment can also be performed by calculating
the overlap rate (in percentage) and the robustness
(in ms) [9, 10, 11, 12, 13]. The former refers to
the proportion of overlap between the intervals
established by FA and human annotators. Similar to
the analysis of agreement, the greater the overlap,
the higher the accuracy; while the latter focuses on
the actual displacement between the midpoints of
the FA and manual intervals. Specifically, the mean
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displacement of error tokens (i.e., the segments
whose midpoints lie beyond a pre-determined
threshold; e.g., 20 ms) was calculated; the less the
displacement, the better the FA performances.

Furthermore, FA performances can also be
evaluated by measuring acoustic features of the
output [2, 14]. For instance, the location of pitch
(FO) peak through the words, the vowel space
constructed by the first and second formants (F1 and
F2), and the consonant VOT. An FA model would
be considered robust when statistical significance is
absent among these measurements.

For the objectives of this study, an FA acoustic
model is trained based on a small scale of
phonetically transcribed field data in Squliq Atayal,
an endangered Austronesian language spoken in
Taiwan. The model performances are evaluated
by the aforementioned measurements, including the
agreement (AG), the overlap rate (OR), the midpoint
displacement (MD, inspired by the robustness), and
the formant measurements.

2. METHODOLOGY

The Montreal Forced Aligner (MFA) [15] was
employed in this study. MFA is a Kaldi-based,
open-source, cross-platform system that not only
provides pre-trained pronunciation dictionaries and
acoustic/G2P models in multiple languages but
also offers a sophisticated API for training new
dictionaries and models, operated in a user-friendly
command-line interface.

2.1. Squliq Atayal dataset and model training

The dataset adopted as the source of the FA acoustic
model training corpus was the complete recordings
(in .wav format, mono at 16-bit/44.1kHz sampling
rate) from a series of fieldwork sessions. All elicited
utterances produced by one female Squliq Atayal
native speaker (excluding the speech produced in
the contact language) were manually labeled at both
word and phone levels by two trained phoneticians
using Praat [16].

To build the pronunciation dictionary, since every
TextGrid file in the current dataset has a phonetically
transcribed phone tier, the pronunciation dictionary
was generated using Python [17] by concatenating
the word and phone tiers in each manually-annotated
transcription. Consequently, all words that occurred
in the corpus were included and combined as a
comprehensive pronunciation dictionary.

The acoustic model training and alignment
procedures were operated simultaneously, with 31
pairs of audio/TextGrid files and the pronunciation
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dictionary as the inputs. Note that each TextGrid
file could only include the word tier, as the
MFA would recognize multiple tiers in a file as
different speakers. The output files included a
.zip file as a newly-trained acoustic model and 31
aligned TextGrid files. The overall workflow took
approximately 40 minutes on a Linux server.

2.2. Evaluation of the MFA outputs

Once the aligned TextGrid file was retrieved, they
were loaded using the PraatI0 [18] package
in Python along with their manually-annotated
counterparts. Here, a customized algorithm was
established to locate the identical segment in
both manual and MFA phone tiers automatically.
Nevertheless, an alignment issue was discovered:
since the manual annotations of the segments were
narrow transcriptions which reflect detailed surface
representation of sounds, many allophonic variants
of identical words were consequently appended into
the pronunciation dictionary. Such variants could
severely impact the workability of the algorithm,
leading to segment mismatches between the manual
and MFA phone tiers. In this case, only one pair
of audio/TextGrid files was included in the current
study (n = 2348; duration = 1065.75 seconds).

Regarding the evaluation procedures, the
temporal-based measurements of the alignment
accuracy (i.e., AG, OR, and MD) were calculated by
comparing MFA outputs with manual annotations
using Python. As for the acoustic measurements,
the F1 and F2 frequencies among each phone
interval from both MFA outputs and manual
annotations were obtained using a customized
Praat script [19] and were then imported to R [20]
for statistical modeling. Particularly, the formant
trajectories through the most common vowels
[a, i, u] constructed by the 30 data points were
fitted by six (2 formants * 3 vowels) generalized
additive mixture models (GAMMs) [21]. GAMMs
are particularly useful for analyzing non-linear
relationships between variables. They also involve
fitting smooth functions to the predictor variables
(i.e., manual vs. MFA) and accommodate non-
normal response variables (i.e., the acoustic data
points), making it applicable to our study.

3. RESULTS

Figure 1 presents an example from the MFA
output merged with its corresponding manual
transcriptions. The first two tiers were annotated
by a human annotator, and the lower two tiers
were aligned by MFA. By eyeballing, the automatic
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alignment results between human and MFA were
fairly consistent, except for the unexpected empty
intervals generated between words. This may be the
case that MFA prefers utterance-level to word-level
transcriptions, as suggested by its documentation.

—mewmwmwwwwwmmmmw

Figure 1: Annotated results by a human annotator
(top two tiers) and MFA (bottom two tiers).

3.1. Measurements of alignment accuracy

Table 1 lists the agreements (AGs) at different
thresholds, separated by vowel and consonant
onset/offset; in addition to the mean AGs at both
boundaries, as well as the overall AGs. As revealed
by Table 1, better AGs were observed in vowel
onsets than offsets. On the other hand, better AGs
were observed in consonant offsets than onsets when
with a higher tolerance. One possible reason is that
the canonical syllable structure of Squliq Atayal is
C(G)V(C), suggesting that both consonant clusters
and hiatus are prohibited [22, 23]. As such, there
should be mostly consonant-vowel sequences that
occur throughout the entire phone tier. Moreover,
the mean AGs of consonants outperform that of
vowels, which is different from the previous studies
[1, 2]. For the criteria of implementing the
thresholds, according to the FA-related literature,
20 ms is considered the most robust threshold [24];
while the literature on under-resourced languages
also reports at 30, or even 50 ms thresholds [1].
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Table 2 lists the mean overlap rates (ORs) and
midpoint displacements (MDs) of the following five
different categories: vowels, consonants, overall
performances, and the most common vowels [a, i,
u]. Note that despite the algorithm suggested in
[9, 13], the calculation of MDs here includes all
segments instead of the error tokens pre-defined by
a given threshold, in order to provide a relatively
comprehensive view of the measurements. Overall,
the results are in correspondence to those of
AGs, where consonants have slightly higher ORs
and narrower MDs than vowels. The results of
ORs/MDs are also consistent among the three most
common vowels. Specifically, [i] are usually better
aligned; while [a] are less aligned.

Table 2: The mean overlap rates (ORs)
and midpoint displacements (MDs) of different
segment categories.

Category OR MD
vowel 53.26% 35.03 ms
consonant 55.20% 29.28 ms
overall 54.29% 31.99 ms
[a] 53.08% 39.63 ms
[i] 71.56% 19.43 ms
[u] 61.88% 28.05 ms

3.2. Measurements of acoustic features

Figure 2 renders the formant trajectories through
vowels [a, i, u] fitted by GAMMs. The duration
was normalized based on the 30 data points along
with the shaded areas representing 95% ClIs. The
red dashed lines illustrate the formant trajectories of
MFA-aligned vowels, and the blue solid lines depict
those of manually-annotated vowels. Crucially, the
overlap between the fits and confidence intervals
suggest no difference between manual and MFA
annotations.

Table 1: The agreements (AGs) of vowels and consonants at different thresholds.

Vowel Consonant
Threshold Overall
Onset Offset Mean Onset Offset Mean
10 ms 30.62% 23.94% 27.28% 54.15% 22.64% 38.40% 32.84%
20 ms 56.82% 46.97% 5190% 65.03% 49.15% 57.09% 54.49%
30 ms 79.67% 66.03% 72.85% 73.81% 73.41% 73.61% 73.23%
40 ms 89.97% 69.74% 79.86% T77.76% 82.59% 80.18% 80.02%
50 ms 91.15% 7191% 81.53% 79.61% 8421% 8191% 81.72%
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Figure 2: Formant trajectories over the
normalized [a, i, u] fitted by GAMMs (MFA = red
dashed lines; manual = blue solid lines).

As revealed in Figure 2, no statistical significance
was found between MFA outputs and manual
annotations except for F1 trajectories of [a] and F2
trajectories of [u]. Note that in the F2 [i] condition,
despite that only limited overlap was found between
two annotations, no statistical significance was
reported.  Overall, the acoustic results are not
only consistent with the OR/MD results that the
alignment of [i] outperforms that of [a] and [u], but
also positively support the reliability of the current
MFA model.

4. DISCUSSION

The discrepancy between current work and previous
studies regarding the assertion that vowels were
associated with better alignments than consonants
may be accounted for by the effect of segment types.
Table 3 further divides the vowel and consonant
categories into the following six types: full vowels,
weak vowel, complex vowels, plosives, nasals &
liquids, and fricatives & affricates. In particular, full
vowels include the canonical vowels [a, i, u, e, 0];
weak vowels consist of pretonic reduced vowels [9,
i]; while complex vowels are the combinations of
vowels [a, i, u] and onglides/offglides [w, j].

Table 3: The mean ORs and MDs of different
segment types.

Type OR MD
full vowels 60.21% 30.21 ms
weak vowels 39.07% 26.52 ms
complex vowels 38.54% 71.27 ms
plosives 60.86% 18.62 ms
nasals & liquids 46.55% 42.85 ms
fricatives & affricates 54.26% 33.04 ms
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According to Table 3, it is obvious that complex
vowels have the lowest mean OR and the largest
mean MD. An additional linear regression analysis
also reveals a statistical significance [F(5, 2342) =
43.05, p < .001 ***].  As a result, the relatively
low performance of vowel alignments is likely
to be affected by those segments classified as
complex vowels. Previous studies such as [10,
25] also suggested that FA algorithms vary overtly
in terms of their accuracy in different types of
segments — specifically, semivowels had the greatest
displacement among other segment types, which
echoes our findings.

On the other hand, the asymmetry between
the absence of statistical significance and the
less overlapping fitted trajectories occurred in the
GAMM results of F2 [i] condition in Figure 2 was
likely to be accounted for by the normalization of
the vowel duration. As shown in Figure 3, the
two critically-misaligned vowels [a] in the word
kinlabang "very wide" may be resulted from the
intrinsic difference in duration. After normalization,
formant trajectories might end up being stretched
or compressed horizontally. Not to mention the
displacement issue — the captured contours could
be substantially off. These factors eventually
influenced the fitting results of GAMMs.

| kinlabang

i n | 1 |u B

Figure 3: The F1 and F2 trajectories over the
word kinlabang "very wide". Regarding the two
phone tiers, upper tier: manual annotation; lower
tier: MFA output.

Overall, the current results reveal that MFA
outputs fairly correspond to manual annotations
when little but comprehensively labeled data were
provided. Furthermore, with the employment of
the G2P model training, a function provided by
the MFA, the minimum requirement of corpus size
for constructing an acoustic model is also worth
examining via the data recursion method proposed
by [9]. This would call for future studies.
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