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ABSTRACT

While motion capture is rapidly becoming the gold-
standard for research on the intricacies of co-speech
gesture and its relationship to speech, traditional
marker-based motion capture technology is not
always feasible, meaning researchers must code
video data manually. We compare two methods for
coding co-speech gestures of the hands and arms in
video data of spontaneous speech: manual coding
and semi-automated coding using OpenPose [1], a
markerless motion capture software. We provide
a comparison of the temporal alignment of gesture
apexes based on video recordings of interviews
with speakers of Medumba (Grassfields Bantu).
Our results show a close correlation between the
computationally calculated apexes and our hand-
annotated apexes, suggesting that both methods are
equally valid for coding video data. The use of
markerless motion capture technology for gesture
coding will enable more rapid coding of manual
gestures, while still allowing for direct comparison
with manually-coded data.
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1. INTRODUCTION

Conducting research on speech and co-speech
gestures can be challenging due to the time-
consuming process of manually annotating gestures
in video data when marker-based motion capture
methods are not available. This can be especially
cumbersome when studying gestures in languages
spoken in regions where marker-based technology
is not readily accessible, increasing the necessity
of manually annotating data. With the advent
of markerless motion capture technology, semi-
automated coding of gestures from video data is
now possible [2], and the potential for rapid and
accurate annotation of gestures is greatly expanded.
An open question concerns how well traditional
manual coding methods align with results of semi-
automated methods. This paper investigates manual

and semi-automated annotation methods to assess
the validity and comparability of the methods.

2. METHODS

2.1. Data

Gesture analysis in this study is based on a corpus
of video/audio data collected with four Medumba
speakers (2 male and 2 female) through interviews
in Banganté, in the West Region of Cameroon.
The participants were recorded in pairs engaged in
conversation with each other and the interviewer
about cultural practices specific to the region. The
speech examined in the study is therefore relatively
‘naturalistic,’ meaning that participants were free to
speak and gesture as they pleased, and the topic of
conversation was relatively unconstrained.

2.2. Manual method

Manual gestures were coded using ELAN [3] and
the MIT Gesture Studies Coding Manual as a guide.
This manual outlines several phases of gestures
based on [4], including preparations, strokes, and
holds. We also coded the ‘apex’ of the gesture,
which occurs within the stroke phase. The apex
has been identified in prior research as an important
landmark in speech-gesture timing [5, 6, 7]. Each
annotated phase is exemplified in Figure 1.

Figure 1: Gesture Landmarks

Though the apex is thought of traditionally as
the point of maximum extension of the articulators
(e.g. the fingers, in the example in Figure 1) [4],
this landmark proved difficult to reliably identify in
video data due to the limitations of the video frame
rate. Namely, the point of maximum extension
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of a given articulator, e.g., the fingertips, may
occur between frames. Thus, we instead used the
point at which the hands displayed peak velocity
of movement, which corresponded to the largest
visualized change in position of the articulator
between video frames, often observed by coders
as an increase in blurriness between two frames.
Furthermore, ELAN only allows for the annotation
of intervals, rather than single points in time. As
a result, each apex was annotated as an interval,
and the first time-point (T1) of the manually-coded
apex was taken as the true timing of the apex for the
purpose of calculations in this study.

For each participant in our study, two trained
researchers annotated the data independently
and then compared annotations to resolve
discrepancies. Researchers coded the data and
resolved discrepancies in coding with the audio
muted to avoid any auditory bias. Next, a consensus
round was conducted with an expanded set of
coders to resolve any remaining discrepancies. This
approach maximized consistency in coding, though
the manual approach is still prone to subjective bias.

2.3. Semi-automated method

Semi-automated coding was performed using
OpenPose, a software tool developed by the
Perceptual Computing Lab at Carnegie Mellon
University [1]. Pre-processing and analysis were
conducted in ELAN and R [8], incorporating
elements from the workflow developed by Pouw
and Trujillo [2]. This multi-faceted approach
allowed us to effectively analyze and interpret
the data obtained from the computational coding
process. First, each video was run through the
OpenPose software to identify 25 articulators, or
keypoints, and track the X and Y positions of the
keypoint relative to the resolution of the video. For
this study, we isolated the movement of the right
index finger (all subjects were right-handed) with
a video resolution of 1280x720 pixels. OpenPose
also assigns a confidence value (between 0 and 1)
that indicates the probability of the model’s tracking
accuracy. Due to low confidence values (<.1), we
excluded data for the fourth participant, where poor
lighting likely led to errors in tracking. Figure 2
illustrates the keypoint identification in OpenPose
for one participant.

Next, we created a time series of all keypoints
produced by OpenPose and aligned the time series
with the video data based on the video frame rate
(FPS). This time series was then used to align the
coordinates with the sound file and calculate the
speed of the articulator. The speed of the articulator

Figure 2: OpenPose Motion-Tracking
was then smoothed using a Butterworth low-pass
filter (frequency = 30 Hz). Finally, the time series
was aligned with gesture annotations in ELAN. The
manually-coded strokes were used to identify the
apex, where the apex was the point of maximum
speed within a stroke based on coordinate data.

2.4. Method of comparison

In order to assess the similarities between our hand-
annotated gestures and OpenPose annotations, we
analyzed the consistency in apex coding between the
two methods. We used "peak speed timing" as the
apex landmark for the semi-automated method and
the start time (T1) of the hand-annotated apex as the
comparative landmark. Using these apex landmarks,
we calculated two measures of apex timing. First,
we calculated the relative time of each apex within
the stroke, i.e., the T1 of the stroke minus either
the OpenPose apex or the T1 of the manually-
coded apex. Second, we calculated the difference
between the two apex measures, i.e., the OpenPose
apex minus the T1 of the manual apex. These two
measures were used to analyze the similarities of
apex timing across the two coding methods, as is
discussed in Section 3.1.

We also compared the alignment of gesture
apexes with vowels in the accompanying speech
across the two methods in order to determine the
comparability of the gesture annotation methods in
relation to speech timing. Apex alignment with
phones was calculated as the T1 of the manually-
coded apex minus the T1 of the nearest vowel, for
manual gesture coding, or the point of maximum
speed minus the T1 of the nearest vowel, for semi-
automated gesture coding. We then compared
the relative apex and vowel alignment of the two
methods, as discussed in section 3.2.

3. RESULTS

3.1. Agreement in apex alignment

Overall, our results show a close alignment between
hand-annotated and semi-automatically annotated
gesture apexes. Figure 3 shows a Bland-Altman
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plot characterizing agreement between manual and
OpenPose-based measures of apex timing. The y-
axis in the plot indexes the difference in timing
measurements for apexes within each manually-
coded stroke, i.e., the time between the manually-
coded apex minus the timing of the corresponding
OpenPose estimated apex. The x-axis plots the
average of the time points between the two apex
measures. The two red dotted lines represent +/- 2
standard deviations from the mean. Results indicate
the average difference (‘bias’) in measurements is
around 40 ms—just over 1 video frame—between
the two measures, with manually-coded apexes
marked slightly later than OpenPose apexes.

Figure 3: Bland-Altman of timing differences
between apex measures

For the comparison between apexes across the
two methods, 87.5% of the apexes fell within a
two-frame (60ms) distance between each other, and
47% of the apexes fell within one frame (30ms)
of each other. Larger differences in timing are
due to either a tracking issue within OpenPose,
differences in manual coder interpretation, or a
combination of these two factors. For example,
coders sometimes annotated longer apexes than was
standard in our process when the apex was difficult
to discern, resulting in greater timing differences
between annotation methods.

3.2. Agreement in apex and phone alignment

Since phonetic studies of gesture timing focus on the
relative timing between apexes and segments in the
speech signal [6, 9, 10, 11, 12], we also examined
the alignment of manual and computational apexes
with vowels; the results are illustrated in Figure 4.

We analyzed the time between apexes and vowels
for both methods and found that the manual method
showed an average time-to-vowel of 287 ms, while
the computational method showed an average time-
to-vowel of 300 ms, an average difference of
13 ms. This measure matches our observation
stated in Section 3.1, where the manual apexes
tended to occur earlier than the semi-automated

Figure 4: Comparison of apex annotation method
times to vowel

apexes. Figure 4 illustrates this trend across all
three participants, confirming the regularity of the
pattern between manually and semi-automatically
coded apexes. Thus, while differences between the
two methods are minimal and relate predominantly
to framerate, the two methods differ in a consistent
and therefore predictable way. Overall, our results
demonstrate high comparability between apexes
coded using the two methods.

4. FURTHER AUTOMATION OF GESTURAL
PHASE ANNOTATION

Currently, this method allows us to automatically
code gesture apexes based on manually-coded
gesture strokes. Thus, further automating gestural
annotation to further reduce manual labor would
require a method for automatically identifying
stroke intervals. Articulatory kinematics have been
used to estimate gesture onsets in speech articluation
data (EMA) [13], and a similar approach could be
applied in the case of co-speech gestures. However,
the level of variability in articulatory parameters
such as hand shape, orientation, and gesture location
pose challenges to this approach. Related to this,
the velocity profiles for different gestures can look
quite different. For example, Figures 5 and 6 provide
speed profiles for two different gestures, the first
a bimanual combined depictive-beat gesture (where
the hands are moving downward and outlining the
shape of an item being described), and the second, a
single-handed beat gesture with the hand extending
outward and downward. Figure 5 shows a gradual
decline in speed, a sharp spike in speed before
the apex, into gradual decline. In contrast, Figure
6 shows a gradual rise and fall over the course
of the gesture. In comparison, the speed profile
for Figure 7 shows a cyclic gesture —where the
speaker moves his two hands in a fluid, circular
motion—which is very similar to the speed profile
of the second beat gesture shown in Figure 6. The
gestural speed profile shown in these three figures
is only a sample of the degree of variation across
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gestures and demonstrates just how difficult it is to
characterize the stroke of a co-speech gesture from
the speed profile alone.

Figure 5: Speed profile of beat-depictive gesture

Figure 6: Speed profile of beat gesture

Figure 7: Speed profile of depictive cyclic gesture

Another challenge of relying exclusively on
kinematic data to code stroke intervals is that not all
hand movements are gestures; i.e., speakers move
their hands to fidget, adjust clothing, etc. Human
annotators can easily distinguish gestures from
fidgets due to the difference in form and intention
behind gestures; however, computationally defining
what constitutes a fidget is more challenging.

Ultimately, the analysis of stroke speed profiles
uncovers the necessity of manual annotations,
for identifying stroke boundaries. Although
automated processes can effectively identify
gestural landmarks where they are quantitatively
defined, manual annotators are better able to
identify more qualitative aspects of the video.
While further investigation of gesture types and
forms and their corresponding speed profiles may
yield a typical speed profile for a given gesture
type and form, and may even distinguish gestures
from fidgets, additional research on this topic is
necessary in order to further automate markerless
tracking methodology. Thus, this study illustrates
the similarities between manually-coded and
computationally coded apexes and presents areas

for further progress in order to fully automate
gestural annotation.

5. DISCUSSION

In the absence of marker-based motion tracking
technology, two main methods are used to annotate
co-speech gestures in video data: manual annotation
and markerless tracking, e.g., through the use of
OpenPose software. While manual annotation
has traditionally been used, markerless tracking
technology offers a potential means to automate
aspects of the annotation process, improving
efficiency. This study compares manually-coded
gesture apexes with those coded semi-automatically
using OpenPose, using a corpus of conversations
between four Medumba speakers.

Our results demonstrate close alignment between
apexes coded using the two methods, validating the
landmark identification of both methods and the
comparability of data across annotation methods.
Our analysis demonstrates that the vast majority
of apexes (87.5%) fall within two frames of one
another. A comparison of the alignment between
vowels and apexes likewise shows a high degree
of similarity, with manually-coded apexes occurring
slightly earlier (13ms) than those using the semi-
automated coding process. Thus, while differences
between the two methods are minimal, those that do
arise are consistent and predictable.

While markerless tracking software offers an
efficient approach to annotating gesture apexes,
our approach still relies on manual coding for
some tasks. For example, both semi-automated
and manual coding methods rely on manually
defined stroke boundaries, based on which apex
timing is determined. Further research on the
kinematic characteristics of stroke phases is needed
to enable automation of this process. Machine
learning techniques provide a promising avenue for
classifying different gesture types in terms of their
kinematic profiles.

Overall, semi-automated methods of gesture
annotation offer a reliable and efficient means of
streamlining co-speech gesture research. Automatic
apex detection yields similar results to manual
apex coding with human coders (with some
small, predictable differences), indicating that data
annotated with the two methods is comparable.
Therefore, semi-automated annotation is a valid
method in co-speech gesture timing research. This
study contributes to the field by demonstrating a way
to expand co-speech gesture corpora without using
marker-based motion capture technology.
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