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ABSTRACT
Language models have become nearly ubiquitous in
natural language processing applications achieving
state-of-the-art results in many tasks including
prosody. As the model design does not define
predetermined linguistic targets during training but
rather aims at learning generalized representations
of the language, analyzing and interpreting the
representations that models implicitly capture
is important in bridging the gap between
interpretability and model performance. Several
studies have explored the linguistic information that
models capture providing some insights on their
representational capacity. However, the current
studies have not explored whether prosody is part
of the structural information of the language that
models learn. In this work, we perform a series of
experiments on BERT probing the representations
captured at different layers. Our results show
that information about prosodic prominence spans
across many layers but is mostly focused in middle
layers suggesting that BERT relies mostly on
syntactic and semantic information.
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1. INTRODUCTION
Pre-trained language models (LMs) have achieved
high performance on several natural language
processing (NLP) tasks such as constituency
parsing [1], semantic role labeling, and coreference
resolution [2]. Recently, prosody and prosodic
phenomena have witnessed increasing attention in
natural language applications enabled by pre-trained
LMs leading to improved performance [3, 4].
Despite the gains, we do not yet fully understand
what enables these models to perform at this
level. Their performance suggests that their learning
objectives potentially teach the models details about
the structure of the language. It remains, however,
unclear, what specific prosodic information these
models are able to implicitly capture during their
pre-training. In this work, we focus on analyzing
the prosodic information in one of the most
widespread models, BERT (Bidirectional Encoder

Representations from Transformers) [5].
Several recent works have investigated the

representations learned at different layers of BERT
in an attempt to interpret and understand the
linguistic information captured by the model. These
studies have uncovered that BERT indeed learns
various aspects of the language. For instance,
[6] showed that BERT layers capture a rich
hierarchy of linguistic information spanning from
surface features in the lower layers to syntactic
in middle layers and semantic in the higher
layers. These findings are further supported
by a number of other works with the general
observation indicating that learned representations
vary with increasing network depth, with greater
depth typically involving linguistic functions that
require larger contextual relationships across the
word tokens [2, 7, 8]. However, to the best of
our knowledge, BERT has not been examined with
respect to its prosodic information.

In general, prosody can be viewed as the
characteristics in an utterance that extend individual
phonetic segments and encapsulate phonetic and
phonological properties that are not due to the
choice of individual lexical items, but depend
on factors such as their semantic and syntactic
relations [9, 10]. These characteristics convey
information about the meaning and structure of an
utterance. Although prosody is a characteristic
of spoken language, the prosodic patterns in
speech are connected and interact with their
associated sequences of syllables, words, and
phrases. Therefore, it is meaningful to assume
that some aspects of the prosodic variation can be
captured from text alone [11, 3].

In this work, we investigate how prosodic
information is linguistically encoded by probing
BERT with respect to the prosodic phenomenon of
prominence. Prosodic prominence is defined as the
subjective impression of a linguistic unit standing
out of its context [12, 13, 14]. Given the recent
success of BERT in predicting prosodic prominence
[3], we attempt to answer the question of what
BERT learns about prosody during its pre-training.
Does the model rely on general linguistic and
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syntactic knowledge for its prosodic predictions or
does it have a different pattern of weight allocations
across its layers suggesting that the model can
capture prosodic information?

We use three datasets with prominence
annotations and examine the weights at different
layers and compare them with existing findings
from the literature on other tasks. To further
validate our approach with the literature we
also extract part-of-speech tags for our data and
examine the learned layer weights. The code
to reproduce the results is publicly available at
github.com/skakouros/bert-prosody. In the
next we describe the BERT model architecture,
related work, experimental methodology and
results.

2. BERT
BERT [5] is a language model based on the
Transformer architecture [15] that enables the
bidirectional pre-training of representations by
jointly conditioning on the left and right context
in all layers. This allows the model to learn
the entire surrounding context of a word which
also means that the same word in different context
will have a distinct representation. In contrast,
earlier approaches looked at text sequences from
left to right or by combining left to right and
right to left training. The BERT representations
are optimized based on two training objectives: (i)
predicting randomly masked words in the input,
and (ii) predicting whether the next sentence is the
subsequent sentence in the input.

Our experiments are based on the
bert-base-uncased variant of BERT. The model
consists of 12 layers, each with an embedding size
of 768, and 12 attention heads.

3. RELATED WORK
Probing network layers to investigate the structural
knowledge of the language that a model has captured
is an active research area that falls under the topic
of neural network interpretability. In recent years
there has been an increasing number of studies
examining the representations that language models
learn. Some works use probing tasks to unveil the
linguistic features encoded in neural models [6, 16],
others use attribution methods such as Integrated
Gradients [17, 18] and some analyze Transformers’
attention heads for evidence of linguistic and
syntactic phenomena [19]. In this work, we identify
each layer’s contribution to a specific prosodic task
by attaching one trainable weight on each layer of
BERT and training a light-weight classification head
on top of a frozen pre-trained BERT. This enables us
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Figure 1: Overview of the experimental setup.

to observe the weight allocations across the layers
and compare them with existing findings.

4. LAYER-WISE ANALYSIS
4.1. Layer weights
We obtain the contribution of BERT layers to
the prediction task by introducing learnable scalar
weights attached to each transformer layer of the
model. An overview of the experimental setup can
be seen in Fig. 1. We take representations from all
transformer layers in the model and collapse them
to one via a weighted average. There is one weight
for each layer (a total of L+ 1) and all weights are
trained jointly with the classification network. The
weights are implemented with a learnable vector of
size L+1, followed by the Softmax function.

4.2. Layer embeddings
To further probe the contribution of individual
BERT layers, we extract the embeddings from each
layer separately and use them to train a classification
head consisting of a single dense layer followed by
the Softmax function. For each embedding layer, we
then obtain the classification accuracy for the task.

5. EXPERIMENTS
In our experiments we use three datasets: two
consisting of read speech and one of spontaneous
dialogue speech. These are presented next followed
by a description of the experimental setup.

5.1. Data
5.1.1. BURNC
The Boston University Radio News Corpus
(BURNC) is a corpus of professionally read news
data in American English [20]. The corpus consists
of speech from seven speakers (three female).
The corpus also contains phonetic alignments,
orthographic transcriptions, part-of-speech tags, and
prosodic labels. In this work we use the text prompts
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Figure 2: BERT layer weights for prominence
(top) and POS (bottom) prediction.

and prosodic labels from the manually labelled part
of the corpus (six speakers; approximately 3 h of
data). The prosodic labeling system in BURNC
is based on the Tones and Breaks Indices (ToBI)
labeling convention and includes prosodic phrasing,
phrasal prominence, and boundary tones. To
obtain a single prominence label, all ToBI pitch
accent types (e.g., H*,L*,L*+H) were marked as
prominent while the rest as non-prominent.

5.1.2. NXT Switchboard
The NXT Switchboard corpus is a dataset
that includes the original Switchboard corpus
annotations [21] into one coherent integrated format
(NITE XML; NXT) enriched with annotations of
prosody and contrast as well as syllable and phone
information [22]. The prosody annotations are
available for a subset of the data that includes 76
conversations labelled with the ToBI transcribing
convention. Similar to BURNC dataset, we use
a binary prominence distinction marking words
with ToBI accents as prominent and the rest as
non-prominent.

5.1.3. LibriTTS
The LibriTTS corpus [23] is a processed
(automatically aligned, segmented, and filtered)
subset of the original audio and text data of the
LibriSpeech corpus [24] that is based on English
audiobooks of the LibriVox project. From the
corpus we use the clean subset that consists of 262.5
hours of read speech from 1230 speakers that were
subsequently automatically labelled for prominence
in the Helsinki Prosody Corpus (HPC) [3]. From
the HPC data, we use the binary prominence tags.

5.2. Experimental Setup
To obtain the layer weights, we train the network
(only the classification head and layer weights) with

frozen pre-trained BERT for prominence and POS
prediction for each dataset separately. For the
training we use a 80-15-5 split for train, validation,
and test. We run the training for 20 epochs with
a batch size of 4 and we repeat each experiment
five times. The results are averaged across the
independent runs for each task. The network is
configured with a learning rate of 5e − 5 and a
different learning rate 1e−2 for the layers weights.
This was done in order to allow the model to adjust
the weights for the different layers more rapidly. We
extract the weights from the model checkpoint with
the best development accuracy and average them
over the five runs. We repeat the same procedure
and setup for POS prediction.

In addition to the frozen pre-trained BERT we
also fine-tune the entire model and report the results
in Table 2 to compare the overall model performance
with both fine-tuned and frozen BERT models.
We use the same learning rates and epochs as the
previous experiment with frozen BERT.

For POS prediction we used Spacy [25] to extract
the part of speech categories. This resulted into 17
discrete classes. POS classes include, for example,
adjectives, adpositions, adverbs (see [25] for a
complete list of the coarse POS categories).

Finally, to balance the data and enable better
comparison, each dataset is post-processed to
include one full sentence per sample. As BURNC
may include an entire paragraph and Switchboard
several sentences per dialogue turn within a sample,
we explicitly set sample size to be one sentence.
Thus, a batch size of four includes four sentences.

6. RESULTS AND DISCUSSION
We report overall model performance for POS and
prominence prediction in Table 2, layer-specific
performance in Table 1, and illustrate how layer
weights vary with respect to different tasks in
Fig. 2. We are interested in examining how different
layers contribute to prominence and POS prediction
with respect to findings on other tasks that have
indicated different linguistic functions associated
with different layers. Overall, for prominence we
observe widespread distribution of the layer weights
while POS appears more focused in the earlier
BERT layers. These are presented in more detail in
the next sections.

6.1. Prosodic Prominence
For prosodic prominence, the three datasets
tested have shown differences in their overall
performance. For example, for frozen BERT,
prominence prediction accuracy was 87.14% for
BURNC, 78.10% for Switchboard, and 82.67% for
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Table 1: Layer-wise accuracy for the test set runs
for prominence and POS prediction with frozen
BERT. Numbers in bold denote the two top results
in each task.

Layer BURNC SWBD LibriTTS
Prom POS Prom POS Prom POS

0 81.51 93.84 75.32 94.62 80.18 89.50
1 83.52 93.90 76.14 94.67 80.32 90.08
2 85.20 94.33 76.01 94.02 80.29 89.53
3 85.20 93.84 75.47 93.50 81.08 89.00
4 85.26 93.47 75.25 92.52 80.28 88.40
5 85.26 93.17 75.82 91.87 80.00 87.29
6 84.13 92.98 75.71 90.95 79.71 86.12
7 84.46 91.76 75.82 90.11 79.40 84.86
8 83.79 91.03 75.45 88.37 79.05 83.48
9 82.92 89.20 74.71 87.20 78.63 82.36
10 82.59 88.47 74.29 86.64 78.32 81.14
11 83.26 87.19 73.08 82.09 77.27 76.67

LibriTTS. These differences are likely due to the
different speaking styles involved in the data, with
dialogue speech having the lowest performance.
Another interesting observation in the results is that
the model performance is degraded for the fine-
tuned models. It seems that when fine-tuning the
model, generalizability decreases due to overfitting
on the idiosyncrasies of the training data. With the
frozen model, performance is high and on a par with
results reported in the literature. For instance, for
LibriTTS [3] report 83.20% and in our setup we
obtained 82.67%.

When it comes to layer weights, prosodic
prominence has a widespread pattern of weights
across BERT layers. Weights span most layers
and are primarily focused within layers 2-8 with
a peak appearing at layer 3. Interestingly, the
pattern of weights appears to be quite similar
across the three datasets tested. The spread
of the weights suggests that different types of
linguistic information are used in the prediction of
prominent tokens. One interpretation of the results
is that the model relies greatly on surface linguistic
features such as POS but also involves syntactic
and semantic information with increasing layers (see
also [6]). For BURNC, we also observe that the
third layer has a high weight for both prominence
and POS prediction. It is possible that prominence
in BURNC (professionaly read speech) correlated
more with POS than audiobooks (LibriTTS) and
dialogue speech (SWBD). Another possibility for
these differences could be also attributed to the
different prominence coding schemes in the three
datasets.

6.2. POS
Part-of-speech information seems to be encoded in
the early BERT layers with model accuracy being
high for both frozen and fine-tuned runs of the
experiments and across all datasets tested. Fine-
tuning the model leads to improved performance,

Table 2: Accuracy for the test set runs for
prominence and POS prediction with frozen and
fine-tuned (ft) BERT.

Prominence BURNC SWBD LibriTTS
frozen 87.14 78.10 82.67
ft 85.53 75.95 80.32
POS
frozen 95.97 97.94 98.49
ft 97.56 98.54 98.96

where for BURNC we get an increase in accuracy
from 95.97% with the frozen model to 97.56%
with fine-tuning. Switcboard and LibriTTS perform
similarly with an increase in performance when the
model is fine-tuned.

Layer weights for POS demonstrate a very
different pattern when compared to prominence.
POS information is found mainly in the lower layers
of BERT with weights across the datasets varying
but being focused in the early layers of the model.
Most of the information seems to come from layers
0-4 which have been shown to encode surface
features [6]. This finding is also in agreement
with other work that shows maximum POS tagging
performance in the lower layers of models with
accuracies ranging from 97.2% to 97.4% [7, 2].

7. CONCLUSIONS
In this work, we performed a series of experiments
on prosodic prominence to investigate whether
prosody is part of the structural information of
the language that BERT learns. Our results show
that BERT captures information about prosodic
prominence through a widespread allocation of
weights across its layers reaching high performance.
The weight allocations suggest that BERT relies on
a variety of linguistic information for its predictions
including surface linguistic features such as POS but
also involving syntactic and semantic information.
In future work, we will explore the same tasks
with an extended set of datasets and methodological
approaches. In addition to layer weights, we want to
include layer integrated gradients as an attribution
method in the experiments. We also aim to examine
differences between the styles in the datasets, that is,
read versus dialogue speech.
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