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ABSTRACT

We investigate how articulation rate is implemented
by different segment types such as consonants and
vowels using corpus data from eight unrelated spo-
ken languages. Our study also sheds light on
methodological issues that arise in the analysis of
cross-linguistic corpus data. With forced-aligned
data from 20-40 speakers for each language, we
observe a robust effect of articulation rate on seg-
ment duration, such that vowels undergo a signif-
icantly greater extent of duration adjustment than
consonants. However, the size of this effect varies
across languages in ways that may be partially due
to alignment quality and cross-linguistic differences
in segment distributions. We propose methods for
accounting for these factors and observe that bring-
ing them into our model does indeed change some
of the language-specific conclusions. We further dis-
cuss the cross-linguistic variation in our data in terms
of language-specific phonetic implementation, and
speculate on its implications for sound change.

Keywords: articulation rate, corpus, cross-
linguistic, generalized additive mixed model

1. INTRODUCTION

Speech rate is an important and well-documented di-
mension of linguistic variation [1, 2, 3, 4, 5, 6]. We
focus on articulation rate, based solely on segmen-
tal material to the exclusion of pauses, as opposed
to speaking rate, which includes pauses as well. Ar-
ticulation rate varies across age [7], gender [3], and
dialect [8], and even within individual speakers and
utterances [5]. However, much remains unknown
about the implementation of changes in articulation
rate. To this end, we ask the following question:
how is variation in articulation rate reflected in con-
sonant and vowel durations? It is reasonable to ex-
pect differences between consonants and vowels due
to their articulatory and aerodynamic properties. An
experimental study reports that the ratio of vocalic
to consonantal material increases as articulation rate

slows down [4] (though see [6]). In other words,
they find that vowels stretch more than do conso-
nants in slower speech. Here, we use speech cor-
pora frommultiple languages to address this research
question. This allows us to test the universality of
any observed effects, and also to look at variation
across languages.
Corpus data come with significant challenges.

The amount of speech data renders manual pro-
cessing impractical and requires automatedmethods.
The accuracy of these methods is often affected by
recording quality. Therefore, when comparing cor-
pora that were recorded under different conditions,
it is crucial to explicitly account for quality differ-
ences. This is relevant for the current study, as we
are interested in exploring cross-linguistic variation,
but our corpora differ substantially in terms of their
recording quality (see Section 2.1).
Cross-linguistic differences in linguistic struc-

tures and their use may also introduce confounds
into statistical models. Of particular relevance to
the current study is the fact that the precise make-up
of broad categories such as consonants and vowels
varies across languages: for instance, a given lan-
guage may have a higher proportion of stops than
another language. There may also be differences
in the extent to which these finer-grained segment
types respond to articulation rate (e.g., stops may be
less stretchy than other consonants). Thus, any ob-
served cross-linguistic differences at a broader level
may simply be artifacts of different frequency distri-
butions at a lower level (e.g., language A has more
stops, which makes its consonants appear generally
less stretchy). It may therefore be important to con-
trol for such differences across languages.
The current study attempts to answer the main re-

search question while mitigating the aforementioned
issues via statistical modeling. Thus, we look at the
differential roles of consonant and vowel durations
in carrying articulation rate, and explore variation
across languages. At the same time, we also high-
light the extent to which recording/alignment quality
and varying segmental frequency distributions can
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distort the results of cross-linguistic corpus studies.
This allows us to strengthen our results, and also pro-
vides important pointers for future work on cross-
linguistic corpus data.

2. METHODOLOGY

2.1. Corpora

Our data come from three databases that contain
speech samples from eight genetically unrelated lan-
guages: Korean and Mandarin (the Origins of Pat-
terns in Speech or OoPS-Lab corpus, created in-
house); Amharic, Georgian, Swahili, Turkish, and
Vietnamese (IARPA; [9]); and English (Buckeye
Speech Corpus; [10]).
Our own OoPS-Lab corpus consists of read and

spontaneous speech from 20 native speakers per lan-
guage.1 All speech data was collected remotely on
speakers’ computers or mobile devices via a dedi-
cated website and transcribed by undergraduate re-
search assistants. Each language contains 2-3 hours
of speech data, and the recordings are of reasonably
high quality.
The Intelligence Advanced Research Projects Ac-

tivity (IARPA) corpus was created to develop speech
recognition technology for noisy telephone conver-
sations [9]. As a result, the recording quality for
these corpora is substantially lower. To mitigate
this issue, we only include telephone conversations
from a home or office environment from a total of
40 speakers per language, but quality issues remain
(more on this in Section 2.2). We analyse a total of
1-2 hours of data per language.
The Buckeye Speech Corpus [10] contains high-

quality spontaneous speech recordings from 40
speakers (20 female and 20 male) from Columbus,
Ohio. Importantly, given that the phonetic align-
ments were manually checked, we expect the align-
ments to be more accurate than the other corpora
used in this study. We can therefore use it to rule out
the possibility that our results from the other corpora
are artifacts of the forced-alignment process.
For the recordings from the OoPS and the IARPA

corpora, we used theMontreal ForcedAligner [11] to
obtain alignments. All durations were extracted us-
ing the PolyglotDB [12] corpus management pack-
age. We analyse a total of 1.429 million segments
(median of 89,547 per language) representing 35,483
utterances (median of 2,822 per language). Analyses
and visualisations were generated using R [13]. All
data and code are available at https://bit.ly/3GVjt0J.

2.2. Analyses

Articulation rate is operationalized as average seg-
ment duration in seconds in an utterance (a stretch
of speech surrounded by at least 150 ms of pauses
on each side). Note that average duration is the in-
verse of rate: a 1 s utterance with 5 segments has a
segment rate of 5/1 = 5 and an average segment du-
ration of 1/5 = 0.2. We define this measure at the
level of segments (as opposed to, e.g., syllables) as
our dependent variable—the duration of individual
segments—is also at this level.
Our research question is operationalized as fol-

lows: do the durations of consonants and vowels
change at different rates as average segment dura-
tion (i.e., inverse articulation rate) changes? For in-
stance, when the average segment duration is short,
consonants and vowels may have the same dura-
tion; but when the average segment duration is high,
vowels may be 1.5 times longer than consonants.
This should correspond to diverging consonant ver-
sus vowel durations when plotted over average seg-
ment duration in log-log space.2

This question is tested using generalized additive
mixed models (GAMMs; [14]) with segment dura-
tion as the outcome and C/V (consonant vs. vowel),
average segment duration and their interaction as
fixed effects. We include random smooths over av-
erage segment duration by speaker × C/V (i.e.
separate groups for each combination of speaker
and C/V) and by language × C/V. This allows
the C/V effect to vary across speakers and lan-
guages. The online materials include the full model
structure. We fitted one model as described above
(baseline model); one that also controls for align-
ment quality (alignment model); and one that con-
trols for alignment quality and different segment dis-
tributions across languages (alignment + segment
model).
To quantify the alignment quality of the record-

ings, we randomly sampled 20 aligned segments for
every speaker. A research assistant judged each
alignment to be “OK” or “misaligned”, where mis-
alignment meant that more than 50% of the aligned
interval was placed incorrectly. This measure fo-
cuses on grossmisalignment, not fine-grained errors,
which are more subjective and harder to identify.
The proportion of “OK” alignments for individual
speakers are shown in Figure 1A. These proportions
were passed through a logistic function with a mid-
point of 0.6 and a growth rate of 15 (Figure 1B). The
resulting weights were then used to run a weighted
GAMM, where each data point contributes to the
model in accordance with their weight. This means
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Figure 1: (A) Proportions of alignments judged
“OK” across languages. Each point represents a
speaker. (B) The mapping between proportions
and model weights. The weights of three speak-
ers are also annotated in the top panel.

that data points from speakers with lower alignment
quality have less of an influence on model estimates.
Our third model controls for differing segment

distributions across languages. While the proportion
of vowels is approximately the same across all lan-
guages, the proportions of consonant types tend to
vary more; for instance, Vietnamese has more nasals
than all the other languages, while Amharic hasmore
stop consonants. We bring this variation into the
model by including a random smooth over average
segment duration by segment type, where segment
type has the levels STOP, AFFRICATE, FRICATIVE, LIQ-
UID, NASAL, APPROXIMANT, HIGH VOWEL, and NON-
HIGH VOWEL.

3. RESULTS

We first show the results from the alignment + seg-
ment model. Figure 2 shows model predictions plot-
ted over data aggregated at the utterance level, with
average consonant and vowel durations shown along
the y-axis, and average overall segment duration
along the x-axis. In all languages, vowels scale more
readily with articulation rate than do consonants—
that is, vowels are stretchier. These differences are
significant across all languages. However, the effect
sizes vary: for instance, Turkish shows only a small
effect compared to the other languages. To compare
the consonant and vowel slopes more holistically, we
derive a metric called∆ effect size (∆β), defined as
the difference in derivatives for the consonant and
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Figure 2: Average vowel and consonant durations
as a function of average segment duration for each
language. The dots are within-utterance averages.
The lines are model predictions from the align-
ment+ segment GAMM. Both axes are on the log
scale.

vowel prediction curves estimated at the median ar-
ticulation rate. A bigger ∆β indicates a more pro-
nounced difference in stretchiness. Turkish has the
lowest∆β (see Figure 4).
Figure 3 shows the results from the three differ-

ent models for Amharic. For Amharic, bringing
alignment quality into the model only makes a small
difference, but controlling for segment distributions
leads to a much higher effect size. Figure 4 shows
the changes in∆β across the three models for all the
languages. Weighting by alignment quality tends to
lead only to modest changes in the size of the effect
(with the exception of Georgian). However, some
effect sizes shift markedly once we bring variation in
segment distribution under control. One noticeable
difference between the baseline model and the align-
ment + segment one is that while the former shows
a wide range of variation in effect sizes, the latter
shows a tight cluster with only Turkish andMandarin
as outliers. Controlling for non-phonetic sources of
variation in the data removes a great degree of ap-
parent cross-linguistic variation.

4. DISCUSSION AND CONCLUSION

Our findings echo the work of [4], showing that vow-
els are stretchier than consonants: as articulation rate
decreases, the proportion of an utterance occupied
by vowels tends to increase. This pattern is stable
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Figure 3: Differences in effect sizes between average consonant and vowel durations across models for Amharic.
Each dot in the background represents an original data point. The solid lines show model predictions for the two
segment categories. Note that both axes are on the log scale.
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Figure 4: Changes in ∆ effect size (∆β) across
models for each language.

even after controlling for alignment quality and seg-
ment types. While all eight languages show a ro-
bust pattern, the size of the effect varies across lan-
guages. The relative ranking of different languages
also changes across models with different degrees of
control, and removing external sources of variation
leads to more uniform estimates.
The differences in the way consonants and vowels

carry articulation rate can be partly explained by ref-
erence to their articulation. Airflow is constricted for
consonants, resulting inmore aerodynamic and coor-
dinatory complexity. To give an example, stops with
closure voicing are impossible to sustain indefinitely
due to the pressure build-up behind the constriction.
It seems plausible that the added complexity of con-
sonants makes them less responsive to changes in ar-
ticulation rate.
Even after controlling for differences in segment

distributions, languages do differ with respect to our

key finding, suggesting that the same segment types
(e.g., stops) can be more or less stretchy in differ-
ent languages. This can potentially be attributed to
subtle cross-linguistic differences in the phonetic im-
plementation of the “same” sound (cf. [15]). For
instance, [16] finds that English and Japanese /s/
exhibit differences in their spectral-temporal prop-
erties. Sundara [17] finds differences between the
coronal stops of Canadian English and Canadian
French in voice onset time, burst intensity and spec-
tral shape. We speculate that at least some of
the differences in our sample may be due to such
fine-grained differences in phonetic implementation.
This could be tested by taking amore detailed look at
duration variation across different segment types in
different languages, which, however, is outside the
scope of this paper.
How articulation rate modulates the phonetic real-

ization of segments also has implications for sound
change. For instance, segments that are particularly
inflexible in terms of their duration may be prone
to ‘catastrophic failure’ under high articulation rate,
that is, full deletion or reduction. To give another ex-
ample, length contrasts may also be more suscepti-
ble to neutralization at high articulation rates in seg-
ments with limited durational maneuverability.
Finally, it is important to emphasise that the study

conclusions do change as data quality and non-
phonetic differences across languages are brought
under statistical control. Cross-linguistic corpus
phonetics [18, 19] has seen a marked surge in re-
cent years. Our findings testify to the importance
of accounting for systematic differences across data
sources in cross-linguistic big data approaches. Sta-
tistical techniques such as the differential weighting
of data points and random effects provide powerful
tools for achieving this goal.
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