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ABSTRACT

We present a methodology for controlling prosodic char-
acteristics of the output of an end-to-end TTS system
based on direct adjustments of latent reference style con-
ditioning vectors (style embeddings). The adjustments
follow directions of maximal change calculated as gradi-
ents of regression fits of prosodic features against dimen-
sions of the latent space. We also introduce a procedure
for mitigating inter-dependencies among control in mul-
tiple prosodic dimensions based on an orthogonal projec-
tion. As the method does not rely on explicit prosodic
annotations used for training, it is easy to implement, and
can be applied to existing models without retraining. Our
approach is evaluated on two single-speaker speech cor-
pora that contain prosodically and stylistically rich mate-
rial.

Index Terms: speech synthesis, style embeddings, proso-
dic features, explicit control, disentanglement

1. INTRODUCTION

As neural speech synthesis achieved human-level perfor-
mance in reading aloud neutral sentences, the attention
of the community has shifted towards methods of elicit-
ing different speaking styles and rich prosodic variation
ubiquitous in real human speech. Simply adding prosodic
variety and different speaking styles to training data is not
enough; the unaccounted variation present in the corpus
is detrimental to the synthesis quality and leads to unpre-
dictable and uncontrollable results.

In order to capture prosodic variation, utterance-level
latent neural representations, style embeddings, are often
used as an additional conditioning of the synthesis sys-
tem [1, 2]. During training, the target acoustic represen-
tation identical to the systems output can be added as an
additional input, and fed by a reference encoder through
a heavily constrained bottleneck, before being concate-
nated with the textual input. The bottleneck style em-
beddings encode the recoverable (prosodic and stylistic)
variation that is not inferrable from the text alone. Given
an appropriate architecture, this approach has been shown
to achieve a considerable degree of disentanglement of
prosodic information from the text.

The style embedding latent space encodes the prosodic
and stylistic characteristics of speech in a high-dimensio-
nal form that does not allow for a straightforward control
of these characteristics in the synthesized output. Modifi-
cations to the encoder architecture [3], and learned pseudo-
label approaches [4] have been applied to disentangle these
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complex representations or reduce the dimensionality, but
robust control in terms of prosodic characteristics is still
very much an open problem.

In this work, we present and evaluate a methodology
for identifying the way in which relevant prosodic char-
acteristics of speech are encoded in the latent embedding
space and devise a mechanism for eliciting prosodic vari-
ation in a controlled way. The underlying assumption is
that the latent space encodes the prosodic features in an
entangled, but topologically coherent fashion. Broadly
following the ideas presented in, e.g., [5, 6], we show
that by following the gradients in the style embedding
space, corresponding to systematic change in the inves-
tigated prosodic features of the encoded utterances, we
can achieve a robust control of prosodic characteristics.
We also present a method for “dissociating” the prosodic
control, i.e., for minimizing the effects of elicited change
in some prosodic features on other features of interest.

The proposed methodology is implemented using ref-
erence prosody embeddings trained within a Tacotron2
speech synthesis architecture as introduced in [2], and
trained on two corpora of Finnish and English speech ma-
terial (see Section 4).

2. PROSODIC FEATURES

Our approach is evaluated for four phonetic-prosodic char-
acteristics of speech utterances derivable directly from
speech signal: fy mean, fj standard deviation, spectral
tilt, and speaking rate. Perceptually, these features corre-
spond to overall pitch level, liveliness, voice quality, and
tempo, respectively.
For utterances in the corpora as well as for synthe-
sized utterances, the frequency related features were ex-
tracted by calling Praat [7] with the Parselmouth Python
library [8]; speaking rate was approximated using text
length as a proxy for the number of phonemic units. In
more detail:
¢ fo-MEAN and fj-STD (standard deviation) were com-
puted in semitones with the pitch floor at 75 Hz,
ceiling at 400 Hz and a time step of 0.1;

 Spectral TILT was computed by analyzing the power
spectrum to Long-Term Average Spectrum with a
bandwidth of 100 Hz and computing its slope with
the low band between O and 1 kHz and the high
band between 1 and 4 kHz, using energy as the av-
eraging method;

» Speaking RATE was calculated by dividing the or-

thographic length of the utterance by the total du-
ration of the sound file.
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3. PROSODIC CONTROL

Despite the complex nature of the underlying representa-
tion (see Fig. 1), the latent style embedding spaces have
been shown to encode some relevant prosodic character-
istics in a systematic way [5, 6, 9, 10, 11, 12]. In what
follows we use a linear regression approach to devise a
way to “extract” this systematicity from an embedding
space produced by a trained encoder. The regression fits
are used as an approximation of the relationship between
the embedding space and the prosodic features of interest.

3.1. Relationship between the latent embeddings and prosodic
features

Let Y be a set of n-dimensional style embedding vectors,
obtained by running the training data through a trained
reference encoder. In order to achieve comparable vari-
ance along all dimensions, we first Z-score normalize the
vectors in Y by scaling. Let X be the resulting normalized
version of ¥ with means equal 0 and standard deviations
equal 1 along each dimension. Let feat be a (single di-
mensional) vector of phonetic-prosodic features of inter-
est, calculated for the utterances encoded by X (e.g., an
fo-MEAN for each utterance).

A linear regression fit feat ~ ag +ajx; + --- + anx,
provides the best (in terms of RMS distance) linear ap-
proximation of the dependence of feat on the normalized
embedding vectors. The regression coefficient vector a =
(ay,...,ay) is the gradient of this linear fit (a; ~ agff(:”);
the vector provides the direction of the maximal slope
of the fitted hyperplane, i.e., an estimate of the direction
within the space X along which the feature feat exhibits
the maximal increase.

The numerical values of the gradient vector a depend
on the values and units of the phonetic-prosodic feature
in feat. In order to “fit” the movement captured by vector
a within the space X, the vector is linearly scaled so that
the greatest absolute value along any dimensions equals
1 (by applying ﬁw) As the standard deviation of the
normalized embedding vectors is 1 along every dimen-
sion, this means the “movement” in the direction of the
normalized vector a corresponds to maximally 1 standard
deviation distance along any dimension in space X.

The normalized direction vector a is recast back to
the original latent space Y by multiplying by the original
standard deviation along every dimension. The resulting
vector b provides an estimate of the direction in the ref-
erence prosody encoding space Y of the steepest positive
change in the values of the feature of interest, and thus
presumably allows for an explicit control of the synthe-
sized speech in terms of the feature fear (see Section 4).

3.2. Dissociation by orthogonalization

The procedure described above provides an estimate of
the direction of maximal change for a single given proso-
dic-phonetic feature. Given a possible entanglement of
the way different features are encoded in the latent space
Y (arising from potential correlations in the corpus), the
process does not guarantee that the given direction does
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not considerably influence the other prosodic character-
istics of synthesized speech. Systematically increasing
mean fy might lead to an increase in, for example, speak-
ing rate, if this type of relationship exist in the corpus. In
order to attempt to dissociate the mutual inter-dependency
of the controlled features we propose an approach based
on orthogonal projection.

Let agary; - - - Afear,, be the direction vectors for m + 1
features of interest, and let F = (agar,, - -, 8%, ) be a
matrix with columns corresponding to the feature vec-
tors Apqy, ;- - -, Afeqr, - Given an assumption of linear in-
dependence of these vectors, the matrix F is a basis of
a hyperplane in the space X. The orthogonal projection
Payg,y, = F(F'F)"'F ay,,, yields the best approxima-
tion of the vector agy, in the hyperplane F. The vec-
tor Ogury = Afear, — Pafear, 18 then the best approxima-
tion of the vector ag,, in the orthogonal complement of
the hyperplane F; it is orthogonal to all vectors in the
space. In other words, the vector Oay,,,, depicts the best
approximation of the direction (in the normalized space
X) yielding maximal increase for the feature feat, and
minimal (in terms of the linear regression fit) increase
for all other features feat,,...,feat,,. In our subsequent
analysis, we will use both these orthogonalized and non-
orthogonalized direction vectors in order to dissociate the
effects of prosodic control proposed here.

4. EVALUATION

In the present work we used a Tacotron 2 architecture
[13], extended with a reference encoder. The implemen-
tation of the reference encoder matches the architecture
described in [2]; the mel-spectrogram is processed and
downsampled with six 2D convolutional layers, followed
by a gated recurrent unit layer (GRU), and the final out-
put of the GRU is taken as the style embedding. This 128
dimensional embedding is then concatenated with each
character embedding of the utterance, forming the input
to the decoder.

In order to evaluate the proposed prosodic control me-
thod, we trained two voices. The first voice was trained
on the commonly used LISpeech dataset [14], 24 hours
of relatively lively narrative style read by an American
English female speaker. The second voice was trained on
a new, yet to be published Finnish speech corpus, Fin-
Syn, of two professional female speakers, with duration
of approximately 30 hours each. The corpus was de-
signed with “ordinary” speaking style variation in mind,
containing mostly continuous read speech of texts with
varying degrees of formality, as well as semi-spontaneous
and spontaneous speech. A 22 hour subset from a single
speaker was used for training.

Both voices were trained on orthographic text, with
numbers and abbreviations expanded. For the Finnish
voice, we applied a version of curriculum learning, train-
ing the system first on a more formal utterances of iso-
lated sentences until diagonal attention was achieved, af-
ter which the rest of the data was added to the training set.
Both voices were trained from scratch for 200,000 steps
with a batch size of 16, on a single Nvidia V100 GPU.
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Figure 1: Correlations between the prosodic features and dimensions of the style embedding reference space.

Table 1: Slopes and 72-values (in brackets) of the fits with scaling factor of the directional vector for the controlled features (in
columns) as predictors and the feature values extracted from the synthesized utterances as dependent variables (in rows).

non-orthogonal direction vectors orthogonal direction vectors
fo-MEAN fo-STD TILT RATE fo-MEAN fo-STD TILT RATE

Finnish corpus

fo-MEAN 1.43 (0.92) 0.88 (0.71) -0.15 (0.25) 0.18 (0.45) 1.26 (0.95) 0.37(0.47)  -0.20 (0.37) 0.18 (0.30)
fo-STD 0.11(0.12) 0.65 (0.90) -0.13 (0.38)  -0.05 (0.09) 0.10(0.12) 0.72 (0.94)  0.00 (-0.01) 0.17 (0.54)
TILT -0.35(0.31)  -0.53 (0.50) 1.29 (0.90) -0.05 (0.00) | -0.28 (0.29) -0.36 (0.33) 1.24 (0.91) -0.25(0.27)
RATE 0.05 (0.03) -0.04 (0.01) 0.12(0.17) 0.41 (0.66) 0.05(0.02)  0.01 (-0.01)  0.09 (0.09) 0.37 (0.62)
English corpus

fo-MEAN 1.53 (0.97) 0.38 (0.5) -0.12 (0.13) 0.2 (0.36) 1.47 (0.96) 0.35 (0.45) -0.11 (0.08) 0.09 (0.11)
f()—STD 0.07 (0.07) 0.64 (0.93) 0.05 (0.06) -0.06 (0.14) 0.01 (0.00) 0.61 (0.89) 0.01 (0.00) 0.01 (0.00)
TILT -0.12 (0.02) 0.13 (0.03) 2.01 (0.89) 0.14 (0.04) -0.1 (0.01) -0.10 (0.02) 2.00 (0.89) 0.24 (0.11)
RATE 0.07 (0.03)  -0.08(0.06) -0.01(-0.0I) 0.36 (0.48) | 0.04(0.0) -0.07(0.04) 0.03(0.00)  0.30 (0.39)

4.1. Evaluation of prosodic control

For each of the two trained models (the Finnish and En-
glish voice), the style embedding vectors were extracted
for each utterance in the training corpus using the refer-
ence encoder. Also, the values of the prosodic features
were calculated for the same utterances, as described in
Section 2. Fig. 1 shows the correlations between the indi-
vidual dimensions of the embedding space and the proso-
dic features. As seen on the figure, each prosodic fea-
ture correlates with multiple dimensions of the embed-

RATE

Jfo-STD

Figure 2: f trajectories of utterances generated with
the Finnish system, controlling speech rate and f; stan-
dard deviation, zero modification in red
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ding space, and several dimensions relatively strongly cor-
relate with multiple features.

The efficacy of the method for disentangling this com-
plex relationship and for providing a control over the pro-
sodic characteristics was evaluated in the following way.
Both non-orthogonal and orthogonal versions of the di-
rectional vectors for the investigated features (vectors b
from Section 3) were calculated using the style embed-
ding spaces and prosodic features. Each direction vec-
tor was orthogonalized against the hyperspace containing
the direction vectors of all three remaining features. The
direction vectors were then scaled by the factors corre-
sponding to integers between -5 and 5 (i.e., up to 5 stan-
dard deviations of the original distribution), and added to
the mean vector of the entire embedding space.

For each scaled version, ten Harvard sentences/their
Finnish translations were synthesized and the prosodic
characteristics of the synthesized sentences were extrac-
ted (see https://tuukkaot.github.io/PhoneticFeatureTTS).
Fig. 2 shows the resulting utterances obtained by scaling
the direction vector for fy-STD and RATE feature.

Fig. 3 shows the distributions of the prosodic char-
acteristics of the test sentences (in rows) as a function of
the directional vector scaling (in columns) for the Finnish
corpus (the corresponding plot for the English corpus shows
very similar behaviour). The plots on the diagonal, de-
picting the behaviour in terms of the controlled feature,
show a strong albeit not always linear relationship be-
tween the scale and the controlled prosodic characteris-
tics; increasing the scale leads to a systematic increase of
the given feature. The plots off the diagonal in Fig. 3 gen-
erally show considerably weaker influence of the control
of on the non-controlled prosodic characteristics.
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In order to quantify these observations, a linear re-
gression model with feature values of the synthesized ut-
terances as the dependent variable and scaling factors as
predictors were fitted for every combination captured in
Fig. 3; the fits are shown as the lines in the figure. The
slopes of these fits and the adjusted 72-values of the mod-
els (depicting the quality fit) are listed in Table 1. The ta-
ble summarises the models for both corpora and for both
non-orthogonal and orthogonalized the direction vectors.

The quality of the fits shows that the control exerts re-
liable and strong influence on the controlled features. The
r?s and the slopes of the fits are greater on the diagonals
(in bold) than off diagonals, i.e, we get better quality of
fits and stronger relations for the controlled features than
for the non-controlled ones (as the slopes depend on the
units of the dependent variables, only the values in the
same row are directly comparable).

Regarding the effects of orthogonalization, in the ma-
jority of cases both slopes and 7*-values off diagonals are
lower for the orthogonalized directional vectors then for
the non-orthogonalized ones. For example, the strong
influence of fy-STD control on the fy-MEAN feature for
the Finnish corpus, clearly visible in Fig. 3, gets substan-
tially attenuated: the slope decreases from 0.88 to 0.37,
r2-value from 0.88 to 0.37.

For some feature combinations, primarily related to
speech rate control, the orthogonalization did not work
as envisaged; e.g., the effects of RATE control on TILT
feature actually increased for both corpora.

5. DISCUSSION

The presented method of controlling prosodic features
in TTS by directly manipulating style embedding space
elicited considerable variation in the controlled features.
Because the method constructs (approximates) the ref-
erence vectors in the existing trained latent space, the
prosodic characteristics are not controlled explicitly, but
the synthesis rather relies on—and replicates—the rele-
vant variance in the training material. For example, the
observed speech rate variation is augmented by appro-
priately inserted/removed silent pauses rather then by a
uniform stretching of the synthesised output (see Fig.2).
The synthesis quality is thus not seriously compromised
even for the relatively high values of the scaling factors.
While we have evaluated the prosodic control only
for a relatively small set of prosodic characteristics, the
methodology (unlike the explicit prosodic control sys-
tems, e.g., [15, 16]) allows for a post hoc inclusion of any
quantifiable controlled features in a straightforward way
by simply calculating and scaling the appropriate direc-
tion vectors (see, e.g., [5, 6] using similar methodology).
Also, we have chosen a relatively “greedy” approach to
the orthogonalization of directional vectors by enforcing
their disentanglement from all other investigated features.
This might not be necessary in practice when the user
of the TTS system might require independent control of
a smaller combinations of prosodic characteristics (e.g.,
tempo from pitch level but not from voice quality). The
proposed method accounts for this type of flexibility.
The method can be easily combined with other ap-
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Figure 3: The distributions of the prosodic characteris-

tics of the test sentences as a function of the directional

vector scaling for the Finnish corpus. The columns cor-
respond to the controlled features, the rows to the conse-
quences of the control. The non-orthogonalized control

in blue, orthogonalized in red.
proaches to style control. While we added the scaled di-
rection vectors to the mean style embedding of the corpus
(equivalent to an “average” rendition), this starting point
could be shifted to any point within the embedding space,
for example, to a style embedding representing a partic-
ular style identified in the training material (by using ap-
propriate explicit or learned labels).

Comparing the performance for the four tested fea-
tures shows relatively less reliability of speech rate con-
trol compared to the other three features. The greater
variability in RATE feature in the synthesized material
(reflected by the lower r2-values) is presumably a con-
sequence of using the number of orthographic charac-
ters for calculating the RATE feature, and the complex
relationship between the letters and durations of speech
sounds. Also, in order to simplify the process, we used
the duration of the sound file rather than duration of the
actual utterance for the RATE feature calculation; lead-
ing and training silences (and also the pauses within the
utterance) might contribute to the variance.

While the corpora used here were not explicitly de-
signed with a vast range of variation along the controlled
characteristics in mind, they do contain prosodically rich
material. This richness does not compromise the syn-
thesis quality produced by the used TTS system, but un-
doubtedly contributes to the degree of controllability. De-
sign and collection of corpora containing prosodically var-
ied material (rather than containing carefully crafted sen-
tences and steady articulation) is one the necessary re-
quirements for achieving high quality, and prosodically
rich and controllable synthesis.
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