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ABSTRACT

The annotation of creaky voice is relevant for vari-
ous linguistic topics, from phonological analyses to
the investigation of turn-taking, but manual anno-
tation is a time-consuming process. In this paper,
we present creapy, a Python-based tool to detect
creaky intervals in speech signals. creapy does not
require prior phonetic segmentation and supports the
export of Praat TextGrid files, allowing for man-
ual revision of the automatically labelled intervals.
creapy was developed and tested using Austrian
German conversational speech. It was optimised for
recall to facilitate a semi-automatic annotation pro-
cess, and it achieved a better performance for men’s
(recall: .79) than for women’s voices (recall: .60).

Keywords: voice quality, creaky voice, automatic
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1. INTRODUCTION

In this paper, we present creapy, a Python-based
tool for automatic creak detection. Creak is a phona-
tion type that is characterised by constriction in
the glottis [1]. Identifying creaky voice is rele-
vant for a wide range of topics in linguistics [2],
such as phonological phonation type contrasts in
various languages [3, 4], prosodic phrasing [5, 6],
turn-taking strategies [7, 8, 9], hesitation phenom-
ena [10], discourse structure [11], the investigation
of emotion and attitude [12, 13, 14] and the sociolin-
guistic study of social markers [15, 16]. Automatic
creak detection facilitates the identification of creak
in large amounts of data and, even if manual correc-
tion may be required, it may speed up the annotation
of data needed for phonetic analyses.

Apart from studying the functions of creak itself,
identifying creaky voice is also relevant for an ac-
curate extraction of fundamental frequency (F0) for
other types of phonetic studies. In creaky segments,
there is a significant increase of errors in the com-
putation of F0 [17]. Either F0 cannot be detected or
the detected F0 displays octave jumps due to erro-
neous identification of periods in the signal. Creak

detection can thus support the manual correction of
automatically extracted F0 by pointing to portions in
the signal in which a faulty detection of F0 is likely.

Given the high relevance of creaky voice in
speech science, several tools for its automatic de-
tection have been developed. Ishi et al. [18], for in-
stance, proposed a tool developed for conversational
Japanese. Drugman et al. [19, 20] presented a creak
detector that was integrated into the MATLAB-
based speech processing tool COVAREP. It was de-
veloped on read and conversational speech from
several languages (i.e., American English, Finnish,
Swedish and Japanese). While our approach on de-
tecting creaky voice is fairly similar to theirs, we
introduce new features and do not rely fully on
those proposed in [19], namely the ones used in
[18, 21, 22] (H2-H1, F0, residual peak prominence,
power peak parameters, inter-pulse similarity, intra-
frame periodicity, energy norm, power standard de-
viation and zero-crossing rate).

Compared to mentioned tools, creapy has the ad-
vantage that it is written in the open-source program-
ming language Python [23] and does not need man-
ual speech segmentation. To detect creaky voice,
creapy reads an audio signal for which it returns
a binary creak decision and the underlying probabil-
ity that yielded that decision for each point in time.
creapy allows for an uncomplicated adjustment of
the decision threshold as well as the parameters that
are used to calculate the features. It supports the
output of creak intervals in Praat [24] TextGrid files,
allowing for an easy integration into a work-flow
including a subsequent manual correction step. Fi-
nally, as we know that creak tends to occur more fre-
quently in informal settings in some languages [25],
we used conversational speech for its development.

2. DEVELOPMENT OF CREAPY

2.1. Materials

creapy was trained and tested on four conversa-
tions from the Graz corpus of read and spontaneous
speech (GRASS) [26]. GRASS’ conversational
component contains unscripted face-to-face conver-
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sations between pairs of Austrian German speakers
who knew each other well (e.g., close friends, cou-
ples, family members). We found this corpus par-
ticularly suitable because we aimed at developing
creapy on high-quality recordings of spontaneous
speech, capturing a broad variety of phenomena that
occur in casual conversations.

We used Praat [24] to label creaky and non-creaky
intervals in 5 to 10 minutes of 4 conversations (over-
all 60 minutes) for each of the 8 speakers (4 women
and 4 men). Intervals were labelled as being creaky
by a combination of auditory analysis and visual in-
spection of the speech waveform (cf., [27]), spec-
trogram and F0 contours. For the set of non-creak
labels, we chose a variety of vowels and voiced con-
sonants, excluding voiceless fricatives, plosives and
noise-like intervals, because creak only occurs in
voiced segments. This resulted in 682 creak and 771
non-creak intervals to train and test the tool.

2.2. Methods

creapy identifies creaky voice by means of a Ran-
dom Forest classifier (RFC) [28] trained on data that
was labelled for the presence of creak (cf., Sec-
tion 2.1). For both classification and determining
feature importance, RFCs were built with 99 estima-
tors, the default maximum depth, with a minimum
samples split of 2, the square root as maximum num-
ber of features considered for splitting a node and
Gini impurity measure. Given an audio file as input,
creapy creates a list of intervals classified as creak.

2.2.1. Acoustic Features

We extracted a set of 89 acoustic features:
EGEMAPSV02 features from openSMILE [29] and
Cepstral Peak Prominence (CPP), which showed to
be a good correlate of voice quality in many stud-
ies [30]. The features were sorted by relevance with
the built-in feature importance of the RFC. The five
highest ranked features were the amplitude differ-
ence of the first and second harmonic (H1H2), the
Harmonics-to-noise-ratio (HNR), the fluctuation of
the periodicity in time (Jitter) and amplitude (Shim-
mer), and the mean of the fundamental frequency
(F0-mean). These features were computed for each
labelled interval of speech in the training set (cf.,
Section 2.1). In a minority of cases, features that
rely on an accurate F0 detection could not be calcu-
lated. Due to the RFC’s inability to handle missing
values, those had to be imputed, i.e., replaced with
an actual numeric value. We chose the median of all
valid results of the feature in question. This imputa-
tion step is valid for our application because creapy
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Figure 1: Confusion matrices of creak classifi-
cation, averaged over speakers of the same gen-
der with the gender-mixed models (left) and the
gender-specific models (right).

pre-eliminates unvoiced intervals prior to the actual
creak detection (cf., Section 2.2.3).

2.2.2. Evaluation of the Feature Set

75% of the data was used for training and 25% for
testing while performing a cross-validation proce-
dure on all speakers. The distribution of labelled
creaky and non-creaky intervals was not balanced
for each speaker. Speakers were evaluated for two
different classification models, one trained on speak-
ers of mixed gender (GenMix) and one trained on
speakers of the same gender (GenSpec, gender-
specific). Figure 1 shows the confusion matrices of
the cross-validation for each model, averaged over
the speakers of each gender. Precision, F1-score and
recall of approx. 90% for all different models indi-
cates a reliable classification of creak.

2.2.3. Creak Detection

In its main application, i.e., the detection of creak,
creapy does not need any labelled data to perform
creak detection in an audio file. Figure 2 shows a
schematic representation of the whole creak detec-
tion procedure. For processing the audio file, we
found that using windows of 40ms length and a
frame shift of 10ms showed good results. As creak
only occurs in voiced segments, we discard voice-
less or silent windows: We first calculate the short-
term energy (STE) of each window, and if below
0.005, those windows are discarded as considered
to contain silence. For those windows with higher
STE, we calculate the zero-crossing rate (ZCR);
for ZCR above 0.12, those windows are considered
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Figure 2: creapy’s processing steps.
voiceless and are discarded as well. This approach
differs from [19], where ZCR is used as one of the
features for the classifier. The five acoustic features
used for creak classification (cf., Section 2.2.1) are
then only extracted for the remaining intervals. If
needed, missing values are imputed using the re-
placement value taken from the training data (cf.,
Section 2.2.1). Based on these acoustic features, the
probability of the current interval being creaky is de-
termined. If the probability is ≥ 0.75, the interval is
classified as creak. We acknowledge that the differ-
ence between non-creaky and creaky voice is grad-
ual rather than binary. Nevertheless, we chose this
threshold because it maximised the F1-score over
several test-runs with different speakers.

To create meaningful creak intervals, a post-
processing step ensures creaky intervals with a min-
imum length of 30ms and maximum gaps between
neighbouring creak intervals of 10ms (cf., Figure 3).
Finally, the resulting creak intervals (bottom row in
Figure 3) are exported to a Praat TextGrid file.

c c c c c c c c c

c c c cc c c cc

Figure 3: Schematic representation of creapy’s
post-processing step to join neighbouring or dis-
card very short creak intervals.

3. EVALUATION AND DISCUSSION

In this section, we present how creapy performs in
long, continuous sound files and we compare cross-
validation results from the gender-mixed (GenMix)
and gender-specific (GenSpec) models. There are
three possible outcomes to evaluate the detection: If
the tool detected a creaky interval which overlaps
with a manually labelled creak interval, this interval
counts as true positive (TP). If there was no man-
ual creak annotation at that point, the interval counts
as false positive (FP). If a manually annotated creak
interval was not detected by creapy, this counts as

Figure 4: Example for a detected creak interval;
second tier (yellow/dotted): manual label, third
tier (blue/diagonal): creapy’s detection, fourth
tier (green and red): evaluation of the detection.

false negative (FN). Figure 4 shows a TextGrid with
manually annotated creak (yellow) and creak as de-
tected by creapy (blue). The bottom tier shows the
duration of a TP in green/checkered and the inaccu-
racy (i.e., time difference between manually labelled
and detected intervals) in red/clean.

Table 1 shows the number of TPs, FPs, FNs, and
F1- and recall-scores of the detection for the gender-
specific models (GenSpec) and the gender-mixed
model (GenMix). Overall, performance decreased
in comparison to the evaluation of the feature set
from Section 2.2.2. This decrease in performance
is not unexpected, as the training material only con-
tained manually annotated creaky and modal inter-
vals. The continuous sound files contain a vari-
ety of speech and non-speech sounds, which were
more difficult to distinguish from creak. A qualita-
tive analysis showed that FPs often occurred in spe-
cific cases: (a) in other non-modal phonation types,
e.g., pressed or breathy voice, (b) in speaker noises,
such as laughter and throat clearing that may contain
other kinds of non-modal phonation, (c) in modal
[a], and (d) in overlapping speech when the inter-
locutor was audible on the speaker’s audio channel.
Thus, a higher performance can be expected when
using creapy on data without overlapping speech.

Compared to the evaluation results (cf., Sec-
tion 2.2.2), Table 1 shows a clearer difference in
performance for speech by men vs. women. Men
have a higher F1-score with relatively more FPs, and
women have an overall lower F1-score and relatively
more FNs. Note that this difference is not connected
to a data imbalance, because the amount of creak la-
bels was gender-balanced. The overall worse per-
formance for women’s speech could be related to
sex-specific differences in the relationship between
H1-H2 and voice quality [31]. The gender-specific
model increased the number of FNs in men’s data
but decreased the amount of FNs in women’s data.
The fact that F0 octave jumps in women’s creak still
fall into men’s modal F0 range could explain the
high percentage of FNs in women’s recordings pro-
cessed with the gender-mixed model. With a semi-
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Model TP FP FN F1 recall
M_GenMix 305 316 80 .606 .792
M_GenSpec 247 129 108 .678 .696
F_GenMix 132 55 193 .482 .406
F_GenSpec 201 103 134 .593 .600

Table 1: Cross-validation results for men and
women, trained with data from all speakers (Gen-
Mix) or with gender-specific models (GenSpec).
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Figure 5: Absolute time difference of manual la-
bels and detection; positive values: interval too
short, negative values: interval too long.

automatic creak annotation in mind, a tool that re-
sults in fewer FNs is preferable, because it is much
more time-consuming to look for creak intervals that
were missed by creapy than to discard intervals
that were incorrectly detected as creak. Therefore,
we propose that the gender-specific model is bet-
ter suited for creak detection for women, but not for
men (cf., lower recall, despite the higher F1-score).

Our definition of TP indicates that creak was
recognised correctly, but not how precisely the
boundaries were detected. We thus compared
the difference between start and end time of all
overlapping labels (cf., Figure 4, with overlap in
green/checkered and deviations in red/clean). Fig-
ure 5 shows the time differences between creapy’s
detection and the manually annotated intervals, sep-
arately for start and end time. We inverted the sign
of ∆tend, so that positive numbers indicate that the
automatically detected interval was too short and a
negative time difference indicates that the detected
interval was too long. The distribution shows a shift
towards positive values indicating that detected in-
tervals tended to be too short. Some minor shifts oc-
cur inevitably due to the fixed frame shift of creapy.
About 20% of the time shifts are within the range of
this frame shift (i.e., 10ms). About 50% of the inter-
vals had an overlap of 75% or more with manual an-
notations. These results indicate that while creapy
shows a good general performance, manual adjust-
ment of boundaries is still recommended.
creapy yielded results comparable to [19]’s CO-

VAREP, a binary decision tree based on Kane et
al. [22]; however, our F1-scores in Table 1 are
clearly higher than their results based on [18]’s fea-
tures. Yet, a detailed comparison is not possible, as
their evaluation methods are not clearly identifiable.

4. HOW TO USE CREAPY

creapy3 performs automatic creak detection in a
continuous audio file. No previous segmentation of
speech is necessary. The user can select from the fol-
lowing pre-trained RFC models: 1) a model trained
on women only, 2) a model trained on men only, and
3) a mixed model trained on both genders (default).
In the configuration file, the user can define the au-
dio files that should be processed. While parameters
from acoustic features and thresholding values (e.g.,
imputation strategy, ZCR and STE threshold, creak
threshold) were tuned to generalise well on multi-
ple speakers in the data we used for creapy’s devel-
opment, these parameters can be adjusted manually
in a dedicated configuration file. Detected creak-
intervals are then written to a Comma-Separated-
Values (.csv) or Praat (.TextGrid) file, the latter
containing a new tier with the detected creak inter-
vals. This TextGrid allows for a manual revision of
the automatically created labels.

5. CONCLUSION

In this paper, we presented creapy, a Python-based
toolkit for the detection of creak in speech sig-
nals. The best performance with a Random Forest
classifier was obtained with only five acoustic fea-
tures (H1H2, HNR, Jitter, Shimmer, F0-mean). In
general, creapy achieved a good performance and
we observed that a gender-mixed model performed
better for men (recall: .79), and a gender-specific
model performed better for women (recall: .60). De-
tected creak intervals had a high temporal match
with manual labels. About 20% of detected inter-
vals overlapped almost entirely with manual labels
and half of the detected intervals overlapped by 75%
or more. In the future, creapy could be improved
with more training data of other non-modal phona-
tion types which were difficult to distinguish from
creak.
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