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ABSTRACT

It is well­established that a word’s phonological
neighbourhood is relevant for many aspects of
phonetic processing. The current study investigated
whether this is true of nonwords too. In the exposure
phase, participants (N=198, English­speaking) were
shown pairings of novel words and novel items. In
the test phase, participants were presented with a
word–item pairing and asked if the item was named
correctly or not. Overall accuracy was high (79.2%).
Nonwords were learned with higher accuracy, and
responded to with faster reaction times, if they
had more neighbours, and if their neighbours were
more well­connected, relative to nonwords which
had fewer neighbours and whose neighbours were
less well­connected. These results demonstrate that
existing words in the lexicon can exert an influence
on the acquisition and processing of novel words.
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1. INTRODUCTION

Several studies have shown that the phonological
neighbours of a word—all the words that differ from
that word only in terms of a single phoneme—can
influence that word’s processing, both in terms of
perception and production [1]. This finding has
been extended, to some extent, to the processing
of nonwords too. For example, lexical decision
reaction time task is modulated by the number
of neighbours of nonword stimuli [2, 3], and
nonword neighbourhoods can influence phoneme
identification [4].

It is less clear, however, how neighbourhood
properties affect the learnability of novel words. By
definition, a word which has not yet been learned is
functionally equivalent to a nonword. This paper
examines how neighbourhood properties influence
novel word learning.

Figure 1: Example novel item stimulus image.

2. METHOD

2.1. Materials

Wuggy [5] was used to generate several hundred
British English nonwords, of which 47 were selected
for use in the experiment. The stimuli were recorded
by a native speaker of British English. Images of
48 novel items with low familiarity ratings were
selected from the NOUN database [6]. An example
image is provided in Figure 1. The nonword stimuli
were as follows:

bɒsp bjuːf bjuːp bjuːʃ
bjuːʒ bjʊә bræb bræmpt bræv
ðiːd ðiːpt druːʤ eɪf fɜːʧ
flɔːʧ fruːm fwɑːθ ɡjuːʃ ɡlæɡ
ɡlaɪb ɡleɪm ɡrʌlpt hjuːf huːls
jɜːft klɒm krɪnθ kwɛmpt pɜːb
plɛsp pwiːθ skwaɪs skwɒf slæʤ
slәʊɡ smɪd spliːʃ splʌnd stʌɡ
swɒsk ʃnæm ʃpiːɡ traʊd vjuːt
zɛft θrɒmps θwæʃt

2.2. Neighbourhood properties

Several recent studies conceive of the phonological
lexicon as a complex network, where words,
represented as nodes in a network, are connected

26. Phonetic Psycholinguistics ID: 555

4056



plan

flanclan

plane
plaque

pan

plans
planned

planner

plant

Figure 2: Example phonological neighbourhood
network centred around the English word plan.
Note that some neighbours of a word are
neighbours of each other. Adapted from [10].

to their phonological neighbours [7, 8]. This yields
a web, part of which is visualised in Figure 2.
This approach allows for the examination of more
nuanced measures than just the raw number of
neighbours.
Four neighbourhood properties are considered in

this study [9]. The degree of a node is the number
of neighbours it is connected to. This is also referred
to as “neighbourhood density”. A node’s coreness
is a measure of how well­connected its neighbours
are. The coreness of a node is the largest value of k
for which the node is in the k­core of the network;
the k­core of a network is the subset of network
with only the nodes with degree of k or more. The
clustering coefficient of a node is the proportion of
the neighbours of a node which are neighbours of
each other. Closeness centrality is a measure of
how close a node is to others in the network, defined
as the reciprocal of the sum of the distance from that
node to all other nodes in the network.
Some stimulus words are singletons. These are

nodes in the network with a degree of zero, that
is, no neighbours. Singletons and non­singletons
are analysed separately due to the fact that the
neighbourhood properties for singletons are all either
zero or undefined.

Each of these measures was calculated for each
stimulus word, and also for the nonword’s lexical
neighbours, using the CELEX lexicon of UK
English. As each stimulus varies in how many
neighbours it has, the values for the neighbours were
averaged. For example, the nonword /bɒsp/ has
a degree of 4, and its neighbours have an average
degree of 13.25. The python package Networkx was
used to calculate these values [11].
These measures are partially correlated with

each other. Some of this correlation is due to
the definitions of the measures themselves—for
example, coreness is intrinsically linked to degree—
but some are due to properties of phonological
lexicons in general. For example, there tends to
be a correlation between the degree of a word and
the degree of its neighbours—this ‘assortativity by
degree’ has been noted to be a property of lexical
organisation in natural language [12, 13]. Table 1
shows a correlation matrix of the network measures
of the non­singleton stimuli.
Due to this collinearity, these measures are

inappropriate to be used simultaneously in a
regression analysis. A factor analysis was
undertaken to reduce the dimensionality of the
neighbourhood measures. Horn’s parallel analysis
returned two factors as optimal; factor loadings are
reported in Table 2. Factor 1 corresponds largely to
the coreness and degree of the nonword stimulus
and the mean degree of its neighbours. Factor 2
corresponds largely to the closeness centrality of
both the nonword stimulus and its neighbours.

2.3. Procedure

The experiment consisted of 6 blocks, each with an
exposure phase and a test phase. In the exposure
phase, a novel item was presented on screen and
the item’s name (a nonword stimulus) was presented
auditorially. Eight item–word pairs were presented;

Word Neighbour
Coreness Degree Closeness Clustering Coreness Degree Closeness

Word
Clustering 0.571 0.459 0.384 ­0.113 0.390 0.379 0.342
Coreness 0.955 0.572 ­0.119 0.686 0.740 0.435
Degree 0.560 ­0.144 0.631 0.681 0.398
Closeness 0.068 0.713 0.692 0.922

Neighbour
Clustering ­0.084 ­0.169 0.196
Coreness 0.960 0.705
Degree 0.659

Table 1: Correlation matrix of the network measures for the non­singleton stimuli and their neighbours.
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Factor 1 Factor 2

Word
Clustering 0.566 0.108
Coreness 0.997 0.008
Degree 0.957 ­0.013
Closeness 0.569 0.753

Neighbour
Clustering ­0.126 0.272
Coreness 0.685 0.457
Degree 0.739 0.381
Closeness 0.429 0.900

Table 2: Factor loadings for the two factors
returned from the factor analysis of the non­
singleton neighbourhood measures.

each pair was presented four times, in random order.
In the test phase, participants were again presented
with an item–word pair and asked if the word was
the item’s correct name. Participants responded via
keyboard, with no time limit on their responses.
The experiment was constructed in Labvanced and
participants were recruited via Prolific, and took
roughly 10 minutes to complete.

2.4. Predictions

As singletons have no neighbours, they are less
similar to existing words in the lexicon than non­
singletons. Singletons should therefore be harder to
integrate into the lexicon than non­singletons, and
as such we should observe lower accuracy on these
words.

For the other neighbourhood properties,
extremely high or extremely low values are
expected to inhibit learning. For example, if a new
word has an extremely high clustering coefficient, it
is being integrated into a very ‘busy’ neighbourhood.
A very low clustering coefficient is a very ‘sparse’
neighbourhood and should be similarly challenging.
Only words in the ‘Goldilocks zone’ should be
learned easily. This prediction is necessarily vague
as we do not currently have the empirical data to
know what values of the neighbourhood properties
count as “extremely high” or “extremely low”.

2.5. Participants

The study was completed by 198 participants, all of
whom were UK residents fluent in English. Most
of the participants (191) were native speakers of
English.1 Participants were compensated GBP2.25
for their participation.

2.6. Analysis

Four regression models were constructed to model
the data: a logistic mixed effects regression model
to predict response accuracy in singleton versus non­
singleton stimuli; a linear mixed effects regression
model to predict reaction time (RT) in singleton
versus non­singleton stimuli; a generalised additive
mixedmodel (GAMM) [14] to predict accuracy from
the neighbourhood factors; and a GAMM to predict
RT using the neighbourhood factors. The RTmodels
included data only from correctly­answered trials in
which the picture and word matched.
The singleton versus non­singleton models

included fixed effects of the stimuli’s status as a
singleton or not, the overall position of the trial in
the experiment (trial number), and their interaction.
Random intercepts of participant and word were
included. The neighbourhood factors are not
predicted to have necessarily linear effects, which
motivated the use of GAMMs. Factors 1 and 2
were included as thin plate regression smooths.
A parametric term of trial number was included.
Random intercepts of participant and word were
also included.

3. RESULTS

3.1. Singleton versus non­singleton nonwords

A speed–accuracy tradeoff was observed in the
models comparing singleton to non­singleton words.
As participants proceeded through the experiment,
they responded overall faster (t =−4.637, p < .001)
and less accurately (z = −3.136, p = 0.002). No
other significant effects were observed: singleton
words did not appear to be significantly harder or
easier to learn than non­singleton words.

3.2. Neighbourhood properties of non­singleton
words

The output of the GAMM predicting response
accuracy is summarised in Table 3. Mirroring the
results of the earlier analysis, accuracy decreased
as trial number increased. A significant effect of
Factor 1 was observed, such that stimuli with higher
Factor 1 scores (higher coreness, higher degree, and
higher­degree neighbours) were responded to more
accurately than stimuli with lower Factor 1 scores.
This effect is visualised in Figure 3.
The output of the GAMM predicting RT is

summarised in Table 4. RT decreased with trial
number, reflecting the speed–accuracy tradeoff
mentioned in the previous section. Significant
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Parametric coefficients:
Estimate t p

Intercept 2.483 17.934 < .001
Trial number ­0.019 ­4.258 < .001

Approximate significance of smooth terms:
EDF F p

Factor 1 1 4.225 0.040
Factor 2 1 3.634 0.057

Table 3: Model output from the GAMM
predicting response accuracy.

Parametric coefficients:
Estimate t p

Intercept 7.591 513.596 < .001
Trial number ­0.001 ­4.128 < .001

Approximate significance of smooth terms:
EDF F p

Factor 1 1 13.514 < .001
Factor 2 1 4.244 0.039

Table 4: Model output from the GAMM
predicting log reaction time.

effects of both Factor 1 and Factor 2 were observed,
visualised in Figure 4. Words with higher Factor 1
scores (higher coreness, higher degree, and higher­
degree neighbours) and higher Factor 2 scores
(higher closeness centrality) were responded to
faster than words with lower Factor 1 and 2 scores.

4. DISCUSSION

The results do not support the hypothesis that non­
singleton words are learned better than singleton
words: both singleton and non­singleton words had
similar response accuracies and RTs. However, there
were differences among the non­singleton words,
governed by neighbourhood properties. Notably,
words with higher degree or higher coreness,
and which had higher­degree neighbours, were
responded to faster and more accurately than words
with lower values. Similarly, words with high
closeness centrality (and high­centrality neighbours)
were responded to more quickly than words with
lower values.
These findings are consistent with a network­

based model of the lexicon, where activation spreads
from neighbour to neighbour [15, 16, 8]. The high­
centrality words can be accessed faster than the low­
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Figure 3: Effects of Factor 1 and Factor 2 on
response accuracy.
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Figure 4: Effects of Factor 1 and Factor 2 on
reaction time.

centrality words, as they are closer to the core of
the lexicon and therefore more accessible. That
neighbourhood properties affect (non)word learning
is a novel finding. This study represents a step
towards a better understanding of the kinds of
lexical influences onword learning, andmay provide
insights on the lexical organisation of languages,
first language acquisition, and second language
acquisition.
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