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ABSTRACT

This study investigated speaker idiosyncrasy in
intensity and mouth opening-closing variations using
an English corpus containing both acoustic and
articulatory data (19 speakers ✕ 59 read sentences).
The speeds of intensity as well as mouth
opening-closing movements were calculated and
summarized in terms of the mean, standard
deviation, and pairwise variability index per
sentence. Multinomial logistic regressions were used
to test the speaker effect and evaluate the amount of
between-speaker variability explained by each
measure. It was found that all measures showed
significant speaker effect. Moreover, the measures
pertaining to the speeds of intensity and mouth
opening-closing movements explained more
between-speaker variability in English.

Keywords: speaker idiosyncrasy, intensity
variability, mouth opening-closing variability,
English.

1. INTRODUCTION

People differ in how they speak and what they sound
like. The major processes in speech production –
phonatory and articulatory activities – all contain
speaker idiosyncratic information; such speaker
idiosyncrasies leave traces in the speech signal and
are thus measurable acoustically (see [1] for a
general review). Salient between-speaker
variabilities in various temporal acoustic features
have been explained in terms of speaker
idiosyncratic articulatory movements (e.g., [2, 3] for
duration variabilities; [4, 5] for formant variabilities;
[6, 7] for intensity variabilities,). This paper focuses
on between-speaker variability in intensity
variability and corroborates it from the articulatory
movements of the mouth.

We followed the method for examining
between-speaker intensity variability developed by
He and Dellwo [7], who partitioned the intensity
curve into rising and falling segments between peaks
and troughs (peaks were identified between syllable
boundaries; troughs were identified between peaks).
The speeds of intensity increases and decreases for

all rising and falling segments1 were calculated using
the Zurich German TEVOID corpus [2, 3]. They
found that the speeds of intensity decreases
explained more between-speaker variability than the
speeds of intensity increases across an utterance [7].
Similar results have been obtained from a Thai
corpus [8]. The authors suggested that speakers
might differ more in mouth-closing movements [7,
8], as a high degree of covariation between intensity
and mouth aperture size was observed [9]. Similar
results were obtained from the same Zurich German
corpus by calculating the first formant variability,
another acoustic feature that covaries with mouth
opening and closing movements [5].

For the current study, we aim to (1) investigate
whether the speeds of intensity decreases also
explain more between-speaker variability in English,
and (2) whether the findings from intensity
variations can be supported by the speeds of mouth
opening-closing movements.

2. METHOD

2.1. Corpus

The sentence-reading part of the EMA-MAE corpus2

[10] was used. Twenty native speakers of American
English were enrolled; each participant read 59
sentences. Both articulatory and acoustic data were
recorded simultaneously (The NDI Wave
electromagnetic articulograph; Fs_NDI = 400 Hz;
Fs_acoust = 22.05 kHz). After data cleaning, 19
speakers (9F, 10M) were kept with 1108 analyzable
sentences in total.

2.2. Data Preprocessing

The intensity curve of each sentence was extracted
using the Praat [11] function “Sound: To
Intensity…” with default settings3. The intensity
curve was then normalized such that the average
intensity equated to 65 dB (SPL).

The mouth opening-closing movements were
characterized using three NDI sensors at the upper
lip (UL), lower lip (LL) and lip corner (LC), as
indicated in Fig. 1. The area of the triangle formed
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by these three sensors was used to estimate the
magnitude of mouth opening (abbreviated as MO
henceforth) at each instant in time based on the x, y
and z coordinates of these sensors [15]4. The
resultant MO curve was smoothed by low-pass
filtering at 10 Hz.

Figure 1: An illustration of estimating the mouth
opening-closing movements from three NDI sensors at
the upper lip, lower lip, and the lip corner. Endnote 4

shows the formula.

Syllable boundaries were placed using the BAS
Web Services5. First, the WebMAUS Basic [12, 13]
was used for phonemic transcriptions based on the
acoustic signals and orthographic transcriptions. The
annotations were saved in the BAS Partitur Format
(*.par). The *.par files were then submitted to
Pho2Syl [14] for the syllabification processing;
syllable boundaries were saved in Praat TextGrids.
The boundaries were cross-checked by the authors.

2.3. Speeds of change in intensity and mouth
movements

For each sentence, the speeds of increase and
decrease in intensity and mouth movement
magnitude were calculated (i.e., the steepness of the
arrows in red, purple and caramel in Fig. 2). For
intensity changes, the peaks were pinpointed
between syllable boundaries and the troughs were
identified between consecutive peak points (see Fig.
2(a), the peak points were indicated by blue down
arrows, and the trough point was indicated by a blue
up arrow). The speeds of intensity increases from a
trough point to its consecutive peak point (i.e., the
steepness of the upward arrows in Fig. 2(a)) is
notated as v_I[+]; the speeds of intensity decreases
from a peak point to its neighboring trough point
(i.e., the steepness of downward arrows in Fig. 2(a))
is notated as v_I[–].

For the speeds in MO increases and decreases,
two methods were followed: (1) the syllable-based
method and (2) the derivative-based method.

Re (1) the syllable-based method: Similar to
v_I[+] and v_I[–], MO peaks were identified
between syllable boundaries, and MO troughs were

detected between peaks (see Fig. 2(b), the MO peaks
were indicated by blue down arrows, and the trough
point was indicated by an blue up arrow). The
speeds of increases from an MO trough to its
following peak (i.e., the steepness of the upward
arrows in Fig. 2(b)) is notated as v_MOsyl[+]; the
speed of MO decrease from a peak to the next trough
(i.e., the steepness of the downward arrows in Fig.
2(b)) is notated as v_MOsyl[–].

Re (2) the derivative-based method: The first
derivative of the MO curve (abbreviated as derMO
hereafter) was approximated in terms of the
difference between the (n+1)th and the nth samples.
An MO peak was pinpointed where the derMO
crossed zero with a downward trend; an MO trough
was pinpointed where the derMO hit zero with an
upward trend [16] (Fig. 2(d) indicates the peaks by
blue down arrows, and a trough by an blue up
arrow). This captured all local flexions in MO. The
speed of local trough-to-peak increase (i.e., the
steepness of the upward arrows in Fig. 2(d)) is
notated as v_MOder[+]; The speed of local
peak-to-trough decrease (i.e., the steepness of the
downward arrows in Fig. 2(d)) is notated as
v_MOder[–].

MO speeds calculated using the first method
focus on macroscopic MO movements within the
frame of syllables, while MO speeds calculated
using the second method focus on a finer scale of
MO movements.

2.4. Variables calculated from the speeds of change in
intensity and mouth movements

(a) Variables based on v_I[+] and v_I[–] Each
sentence contains a number of v_I[+]s and v_I[–]s.
Their central tendencies, dispersions and sequential
variabilities were calculated in terms of the means,
standard deviations, and pairwise variability indices6

ad modum He and Dellwo [7]: mean_vI[+],
stdev_vI[+] and pvi_vI[+], as well as mean_vI[–],
stdev_vI[–] and pvi_vI[–].

(b) Variables based on v_MOsyl[+] and
v_MOsyl[–] Similarly, each sentence contains a
number of v_MOsyl[+]s and v_MOsyl[–]s. Their
means, standard deviations, and pairwise variability
indices were calculated: mean_vMOsyl[+],
stdev_vMOsyl[+] and pvi_vMOsyl[+], as well as
mean_vMOsyl[–], stdev_vMOsyl[–] and
pvi_vMOsyl[–].

(c) Variables based on v_MOder[+] and
v_MOder[–] In the same manner, the means,
standard deviations and pairwise variability indices
were calculated based on v_MOder[+] and
v_MOder[–] for each sentence: mean_vMOder[+],
stdev_vMOder[+] and pvi_vMOder[+], as well as
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mean_vMOder[–], stdev_vMOder[–] and
pvi_vMOder[–].

Figure 2: (a) An illustration of speeds of intensity
increases and decreases; (b) an illustration of speeds of
MO increases and decreases using the syllable-based

method; (c) syllable boundaries with the SAMPA
transcription (“get back”); (d) an illustration of speeds of
MO increases and decreases using the derivative-based

method; (e) MO peaks and troughs pinpointed from
derMO.

2.5. Statistical analysis

JMP was used for statistical analysis. To quantify
how between-speaker variability was differentially
explained by the positive and negative variables in
§2.4, the multinomial logistic regressions (MLRs)
were fitted with speaker as the nominal response
variable and the variables in §2.4 as the numeric
predictor variables. Sentence effect was mitigated by
z-score normalization. To bypass the collinearity
issues, nine MLR models were separately fitted (M1
– M9 below).

For variables based on speeds of intensity
increases and decreases: (M1) speaker ~ mean_vI[+]
+ mean_vI[–], (M2) speaker ~ stdev_vI[+] +
stdev_vI[–], (M3) speaker ~ pvi_vI[+] + pvi_vI[–].

For variables based on speeds of MO increases
and decreases calculated across syllable boundaries:
(M4) speaker ~ mean_vMOsyl[+] + mean_vMOsyl[–],
(M5) speaker ~ stdev_vMOsyl[+] + stdev_vMOsyl[–],
(M6) speaker ~ pvi_vMOsyl[+] + pvi_vMOsyl[–].

For variables based on speeds of MO increases
and decreases calculated based on derivatives: (M7)
speaker ~ mean_vMOder[+] + mean_vMOder[–], (M8)
speaker ~ stdev_vMOder[+] + stdev_vMOder[–], (M9)
speaker ~ pvi_vMOder[+] + pvi_vMOder[–].

For each model, the amount of between-speaker
variability was calculated as (χ2/Σχ2)×100%, where
χ2 refers to the likelihood ratio χ2 of a particular
variable, and Σχ2 refers to the sum of likelihood ratio
χ2s of both variables in a model.

3. RESULTS

Due to the page constraint, the model fitting details
and statistical results of the nine models are not
tabulated in this paper; they are documented as a
supplementary material accessible via
https://osf.io/n7jcu. For each model, the variable
based on the positive speed explained more
between-speaker variability than its negative
counterpart (Fig. 3 indicates the percentage of
between-speaker variability explained by each
variable per model).
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Figure 3: Between-speaker variability calculated from
nine MLR models. (a) variables based on vI[+] and

vI[–]; (b) variables based on vMOsyl[+] and
vMOsyl[–]; (c) variables based on vMOder[+] and

vMOder[–].

4. DISCUSSION

For native English speakers, measures based on
speeds of intensity increases explained more
between-speaker variability in general (except for
the mean measure, although the difference is
small-scale). The speeds of mouth opening and
closing also differentially explain between-speaker
variability in a similar manner: the measures based
on the speeds of MO increases are more powerful in
explaining speaker variability than the ones based on
the speeds of MO decreases.

Congruency in the results obtained from both
acoustic and articulatory data supports the attempt to
investigate speaker idiosyncrasy in mouth
opening-closing articulation via variabilities in
intensity increases and decreases [7, 8]. This
suggests that speaker idiosyncratic features can be
shared across interconnected systems. In linguistics
and speech communications, features shared
between domains (visuo-articulatory, acoustic,
neurological and gestual) are helpful, and sometimes
crucial for comprehension [20, 21, 22].

In terms of the disparities in the speeds of
increases and decreases for intensity and mouth
opening-closing movements in encoding
speaker-specific information, it is likely that during
speech articulation, English speakers exhibited more
freedom in the mouth opening phases, while in the
mouth closing phases they coordinate their
articulatory movements in a more controlled way. In
a study on the reproduction of articulatory
trajectories using a model-based method, it has
already been demonstrated that the motor programs
may be different in the opening and closing gestures
[23].

It is also interesting to see that the English
speakers exhibited the opposite pattern compared to
Zurich German and Thai speakers [7, 8]. It is likely
that the role of mouth opening-closing cycles is not
universal across languages, and the way
speaker-specificity is encoded in this dynamic
process and its acoustic outcomes are also different
in different languages. Using spontaneous speech, a
number of studies have shown that the distribution
of speaker-specific information in speeds related to
the increases and decreases of intensity and F1 are
more or less balanced in Dutch, English and German
[24, 25, 26]. The differences might be attributed to

the use of spontaneous speech, which is believed to
be less controlled and thus displaying larger
variations in articulatory patterns in general [27, 28].

Although different studies involving different
languages and speaking styles exhibited different
results in terms of the amount of speaker specificity
explained by measures that are attributed by the
speeds of mouth opening and closing movements,
speaker effect remained significant regardless of the
speed directions (see the model fitting results in the
supplementary material https://osf.io/n7jcu) and the
languages involved [5, 7, 8]. These findings have
implications for forensic phonetics, ASR and other
research fields that require the characterization of
individual speakers. In forensic voice comparison
closer attention should be paid to parts of the speech
signals which are more informative about speaker
identity in a particular language. In terms of ASR, it
may be possible to achieve higher system
performance if different parts of the acoustic signal
are modeled differently. Of course more work needs
to be done to gain better insights in our general
understanding of the acoustic-articulatory dynamics.
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_______________________________

1 He and Dellwo [7] referred to the speeds of intensity
increases and decreases as “positive and negative
dynamics” of intensity. In the context of [7], “dynamic(s)”
was used in its most general sense to mean “non-static”
properties of the intensity curve. Here, we refrain from
using the word “dynamics” to avoid confusion with its
more technical sense in mechanics, where “dynamics”
entails elucidating the forces underpinning movements.
We did not characterize these forces.

2 The EMA-MAE corpus is based on work supported by
the National Science Foundation of the United States
under Grant #IIS-1142826 to Marquette University, which
support does not constitute an endorsement.

3 The underlying signal processing details are described in
He and Dellwo [7].

4 The formula for calculating the triangle area based on

3D coordinates is .
The MATLAB script (mouth_opening_area.mlx) for the
computation is available via https://osf.io/qjh6p [15].

5 URL: clarin.phonetik.uni-muenchen.de/BASWebServices

6 For a series of numbers (x1, x2, x3, …, xn), the pairwise
variability index (pvi) was calculated as (|x2 – x1| + |x3 – x2|
+ ··· + |xn – xn–1|) ÷ (n – 1). The pvi was initially
developed to measure speech rhythm based on the
durations of vocalic or intervocalic intervals [17].
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