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ABSTRACT

Automatically detecting cognitive decline using
speech and language technologies is a field of
growing research. This domain deploys AI-
based classification technologies into clinical
environments to assist traditional diagnostic
methods. This paper explores a new series of
disfluency features to assist the widely adopted
acoustic-linguistic elements of contemporary
automatic dementia diagnosis.

Utilising automatic speech recognition,
phoneme recognition, and voice activity detection
technologies on the Sheffield IVA data [1], we show
improved accuracy from a baseline of 78.4% to
83.2% using automatically calculated disfluency
features. This paper contributes disfluency features
as a method of enhancing current feature sets used
in the automatic detection of cognitive decline, and
highlights potential approaches towards reliably
extracting these disfluency features automatically.
Features that are less dependent on raw acoustic
information are potentially more generalisable and
robust for dementia classification tasks in varied
environments, a key obstacle in this domain.
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1. INTRODUCTION

Cognitive decline (CD) and diseases such as
Alzheimer’s Dementia (AD) pose a significant
challenge to health services worldwide, with an
estimated 139 million people worldwide living with
dementia by 2030 [2]. As the need for early and
accurate CD detection increases, a growing body of
work within the speech and language technologies
(SLTs) domain is looking at assisting doctors and
clinicians in the diagnosis of CD through the use
of automatic cognitive decline detection (ACDD)
systems, specifically through the automatic analysis

of speech [3]. Speech is an effective biomarker for
this task as it is readily available, easy to collect,
and contains features that correlate well to different
levels of CD [4, 5, 6, 7].

Numerous studies have highlighted the
effectiveness of different temporal measures of
speech for discriminating between people with CD
and healthy controls. Some temporal measures
such as speech rate are even salient enough to
differentiate between prodromal dementia and early
stages of AD [8]. Pauses are another common
feature frequently investigated for the purpose
of automatically detecting CD, with correlations
found between the number and duration of filled
and unfilled pauses and levels of CD (for example
in [9] and [10]). Despite this, little research has
been conducted into the feasibility of using other
disfluencies to aid in the detection of CD. This
is due, in part, to the difficulties of including
disfluencies in automatically produced transcripts.

This study, building on work from [11], explores
the efficacy of using manually annotated disfluency
features to aid in the automatic detection of
cognitive decline. The capability of these features
to enhance the performance of traditional acoustic-

linguistic based systems is demonstrated, and
initial experiments to automatically calculate these
features are presented. Automation of these features
is imperative in order to apply them to speech
analytics based classification systems.

2. BACKGROUND

Recent successful ACDD systems have consisted of
the following components. A virtual interface asks
a patient some pre-written prompts and records the
response [12]. An automatic speech recognition
(ASR) system is used to transcribe their utterance
into textual information. Two sets of features
are typically generated; acoustic (non-verbal) and
linguistic (verbal) [13]. Acoustic features include
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Table 1: Disfluency features used within this study and their descriptions with constituent elements

Disfluency Feature Description
Unfilled Pauses Silence lasting >200ms
Filled Pauses Sustained sound, typically a vowel or a sound that is not part of a word, lasting >200ms
Repetitions Part word, whole word, or phrase repetitions
Prolongations Prolongation of a phone lasting >200ms
Repairs When a speaker alters what they had been saying
Speech Errors Phonetic additions, substitutions, or deletions. selection errors, retrieval errors, and blends

metrics extracted directly from the audio recordings,
and linguistic features include parameters extracted
from a transcript of the speech to be analysed. These
features are then fed into a classification system
which is trained to discriminate between classes (or
conditions).

Recent work from [11] suggests that disfluency
information could be valuable in a CD detection
task. A manual disfluency analysis found that
features such as number of word repetitions and
prolongations were significantly different between
people at different stages of cognitive decline.
The present study aims to use this disfluency
information to inform an ACDD system alongside
acoustic-linguistic features. However, automating
this process is no simple feat. Typical ASR
systems are designed to ignore disfluencies in
speech and therefore disfluencies are not typically
present in automatically created transcripts. Unlike
“traditional” features used for similar tasks,
disfluency features have the added benefit of being
easily explainable. The issue of explainability and
interpretability is especially relevant when working
in the medical domain, as discussed in [14].

3. DATA

A subset of the Sheffield IVA dataset [1] was
used for this project. This data is collected via
a virtual agent as part of an ACDD system that
poses a number of language tasks to patients and
records their answers. The task used for this
study was the Cookie Theft picture description task
[15]. Participants belonged to one of three different
diagnosis groups; healthy controls (HC), mild
cognitive impairment (MCI), and neurodegenerative
dementia (ND). The ND group contains participants
with various types of dementia, which could also
include AD. Each group contained 18 recordings.
Recordings were selected for this study based on
the intelligibility of the speech from the participants.
Classification tasks within this study use 15 HC and
10 ND participants. In the larger IVA dataset there
may be multiple recordings of the same speaker.

Our sample contains only one recording for each
participant.

4. METHODOLOGY

4.1. Feature Selection & Extraction

4.1.1. Manual Disfluency Features

A disfluency schema was created to determine
exactly which disfluencies should be investigated.
This was based largely on the work of [16]. After the
work conducted in [11], minor changes were made
to the disfluency schema resulting in the schema
outlined in Table 1 above.

Praat [17] was used to manually annotate all
instances of the above disfluencies within the
recordings. Diagnosis labels were hidden from
the annotator, a trained phonetician, to avoid any
potential bias.

4.1.2. Automatic Disfluency Features

A Jupyter Notebook was created to calculate the
disfluency features automatically. Voice activity
detection (VAD) [18, 19] with a threshold of
50ms onset/offset and a 50ms minimum speech
threshold (informed by the average length of voiced
and unvoiced British English syllables [20]) was
used to identify and parse the speech components
of each file. A convolutional recurrent deep
neural network (CRDNN) based Commonvoice [21]
ASR system was used; this was preferred over a
transformer based system given the potential for
improved performance on non Southern British
English accent groups [22]. For the syllabic
(and particularly non-lexical) aspects of the task
both phoneme recognition (PR) and grapheme to
phoneme (G2P) technologies were explored. PR
(using CMUSphinx) transcribes a phone given an
audio signal input. G2P takes the output of an
ASR system and transcribes back into phones. PR
was found to outperform G2P and was therefore
used for syllable parsing and all non-lexical feature
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Table 2: Linguistic features used within this study [12], the number of features (n) within each category, and the
automated elements needed for each feature to function

Tok: Tokeniser, POS: Part-of-Speech Tagger, W_List: Word List, CoRef: Co-reference Tagger, Sem_Tag:

Semantic Tagger, POS_Pat: POS Pattern Matcher, Tree: Syntactic Tree Parser

Feature(s) n=# Automated Components
Content Density 1 Tok, POS, W_List
Part-of-Speech Rate 45 Tok, POS
Reference Rate to Reality 1 Tok, POS
Personal, Spatial and Temporal
Deixis Rate 3 Tok, POS, W_List, CoRef

Relative Pronouns and Negative
Adverbs Rate 2 Tok, POS, W_List

Lexical Richness 3 Tok
Action Verbs Rate 1 Tok, POS, Sem_Tag
Frequency-of-Use Tagging 1 Tok, W_List
Propositional Idea Density 1 Tok, POS, POS_Pat
Mean Number of Words in
Utterance 1 Tok

Number of Dependent Elements
Linked to the Noun 2 Tok, POS, Tree

Global Dependency Distance 2 Tok, POS, Tree
Syntactic Complexity 1 Tok, POS, Tree
Syntactic Embeddedness 2 Tok, POS, Tree
Utterance Length 2 Tok

calculations. The disjoint between the ASR and PR
provided some inaccuracy; a robust ASR system for
Northern British English with a phone level output
would have resulted in better accuracy in this area.

4.1.3. Automatic Acoustic Features

The openSMILE toolkit [23] was used in this study
for acoustic feature extraction using the Python
API. eGeMAPSv02, Emobase, and ComParE were
used as feature sets that have been well explored
within the literature. All three feature sets were
calculated for each of the participant recordings. 42
features containing SMB contour smoothing within
ComParE were redacted due to a strong negative
impact on support vector machine (SVM) accuracy
due to the values being calculated as near binary
measurements (distance away from min|max < 10�5

when normalised).

4.1.4. Automatic Linguistic Features

Table 2 highlights the linguistic features extracted
for this research [12]. These features were extracted
using a variety of different tools highlighted
within the Automated Components column. The
libraries used were spaCy [24] (word tokenisation,

POS tagging, coreference resolution, and semantic
tagging), NLTK [25] (sentence tokenisation and tree
parsing), and Re(gex) (POS pattern matching). A
Jupyter Notebook was developed using Python 3.10
containing custom written functions to extract each
feature.

4.2. Baseline System

The baseline classifier in this study was developed
using exclusively interpretable metrics; we did
not use features such as word embeddings as it
was counter-productive to the ambition of finding
interpretable solutions. A baseline two way
classifier was built to discriminate HC-MCI/ND.
An SVM was trained using acoustic feature sets;
eGeMAPSv02, Emobase, and ComParE using the
following hyperparameters {“C”: 100, “gamma”:
0.001, “kernel”: “rbf”}. All SVMs were developed
using 5-fold cross validation. Baseline performance
was 78.4% for HC-MCI/ND. The baseline system
used exclusively acoustic features for reasons
discussed in Section 5.

For our disfluency features, normalisation was
explored using three options; relative to speech
duration, instances per 100 syllables, and relative
to word frequency. Word frequency was the most
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underperformant normalisation metric hindering
performance of the disfluency features to below
the baseline. This may be due to the syllabic
nature of disfluencies and that an ASR system does
not provide a reliable output for features such as
speech errors and non-speech events, limiting the
utility of word frequency as a way of measuring the
length of discourse. Speaker duration worked well,
achieving performance slightly above the baseline at
79.2% (HC-MCI/ND). Syllabic relative frequency,
a common method for counting disfluencies, was
the most effective outperforming the baseline with
83.2% (HC-MCI/ND). Syllabic relative frequency
was not found to be beneficial for the normalisation
of textual features, therefore the final SVMs utilised
conventional normalisation as detailed in [12] for
these features.

5. RESULTS & DISCUSSION

The linguistic features used in this study were
developed for what is arguably the most popular
corpus of ND speech; the DementiaBank Pitt
Corpus [26]. Tested on Pitt Cookie Theft, an SVM
was built with an accuracy of 78.8% on a 2-class
HC-MCI/ND discrimination task; however these
features perform with an accuracy of 49.6% on the
Sheffield IVA data. There is a large limitation in
this area of research caused by data scarcity and
mono-corpus challenge based research that results
in difficulties in determining the generalisability of
feature sets across different corpora. These results
highlight the need to test ACDD systems on unseen
corpora to ensure reliable efficacy outside of a single
data set. For this reason, linguistic features were
not included in our baseline. A preliminary series
of experiments on the Pitt Corpus demonstrated
enhanced performance with linguistic features and
disfluency features combined. Therefore these
features were retained for the final Sheffield IVA
classification system to acknowledge the potential of
these features to increase generalisability.

Table 3: HC-MCI/ND SVM Accuracy Results (5-
fold cross validation)
{M-#: Manual, A-#: Automatic}

Model Accuracy
Acoustic Only 77.6%
Linguistic Only 57.6%
Acoustic + Linguistic 68.8%
Manual Disfluency 88.8%
Automatic Disfluency 78.4%
Ac + Ling + Auto Disfluency 83.2%

An SVM trained exclusively on the manually

annotated disfluency features yielded a baseline
performance of 88.8%. This strongly suggests
human annotated disfluency features have the
capacity to enhance the performance of existing
models. In order to automate disfluency feature
extraction certain features were omitted. Blends
and substitutions (categorised as speech errors in
the above schema) were removed from the feature
bank due to falling below a threshold of 10 instances
within our subset of the Sheffield IVA dataset.

Table 3 demonstrates improved performance
of 5.6% from the acoustic only SVM baseline
trained on the Sheffield IVA data when using
an SVM enhanced with automatically calculated
disfluency features. The performance of the
manually annotated features remains substantially
higher at 88.8%. Overall these results demonstrate
that disfluency features provide meaningful
performance improvements to ACDD SVMs in the
context of HC-MCI/ND discrimination when using
conventional and interpretable linguistic/acoustic
feature sets.

6. CONCLUSION

This study has demonstrated the potential for
enhancing ACDD systems through the automatic
extraction of disfluency features. The difference
between manual and automatic feature performance
remains large; whilst this paper has demonstrated
the potential for boosting system efficacy more
research is needed to optimise approaches for
extracting each feature. Future research may wish
to focus on a larger scale analysis of disfluency
feature generalisability. Our future research will
focus on the behaviour of linguistic features to
supplement this work on disfluency features and aim
to inform greater intuition about the behaviour of
different modes of automated features in real world
environments.
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