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ABSTRACT

Factors predicting acoustic variation in the
production of Spanish taps have yet to be
investigated outside of their relationship to the
tap-trill contrast. The present study models the
duration of alveolar taps with occlusions visible on a
spectrogram in spontaneous Spanish and compares
durations measured by automated methods to hand-
placed boundaries. We model tap duration from
the Nijmegen Corpus of Casual Spanish [1] with a
combination of lexical, phonetic, and phonological
predictors. Results indicate a high degree of
uncertainty regarding the relationship between most
of our predictors and tap duration. However, we are
confident that faster speech rates are associated with
decreased duration. Our automated measurements
show deviations from hand-measured duration,
indicating a need to evaluate the performance of the
automated methods in future research.
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measurement, speech production

1. INTRODUCTION

Studies analyzing the duration of Spanish alveolar
taps (hereafter taps) have generally focused on
comparing productions across speaker groups [2],
investigating acoustic correlates of the tap-trill
contrast [3, 4] or both [5]. The present study’s
primary goal is to augment our understanding
of variation in tap production. We model tap
duration with phonetic, phonological, lexical, and
predictability-related factors. Our secondary goal
is to compare tap durations based on experimenter
markup to three automated methods that measure
duration with minimal researcher markup and
evaluate the methods’ impact on model estimates.

In research on other languages, various predictors
have been associated with changes in duration at
the segmental, syllabic, and word levels. Increased
frequency and predictability have been associated
with decreased duration [6, 7]. Duration differences
by phonetic factors such as phonetic environment

and speech rate have been attested [8, 9]. Lexical
stress and pitch accents have also been associated
with changes in stop closure duration [10].

When measuring the duration of segments
without an apparent onset or offset, which includes
many Spanish taps [3, 4], it is desirable to
have a measurement method that applies to most
realizations. One alternative to human markup
includes using boundaries placed by an acoustic
model through forced alignment, although this
method has some known issues [11]. Another option
is to use intensity to measure duration, which can be
done in various ways [12, 8, 13]. Before applying
these methods to Spanish taps, we believe it is
important to compare them to hand measurement for
tokens with visual cues to onset and offset, where
experimenter markup can be consistent.

2. METHOD

The data and the script documenting the analysis
are available through the University of Alberta
Education and Research Archive here: https://doi.
org/10.7939/r3-5k3f-4t63

2.1. Data coding and measurement

We analyzed a random 10% sample of intervocalic
taps from the Nijmegen Corpus of Casual Spanish
[1], containing 20 conversations between groups of
three university students from Madrid, Spain. Of
the 2,606 hand-coded taps, 1,312 had occlusions
visible in a spectrogram (‘True’ or ‘Approximant’
taps following previous studies [3, 4, 2, 5, 14]).

Each tap’s duration was measured in four ways
using a script in Praat (v 6.1.47; [15]). The first
method was the manual placement of boundaries,
carried out by the first author. For stop-like taps, the
onset was placed at the beginning of the stop closure,
and the offset was placed at the onset of periodic
energy after the burst release. For approximant taps,
onset and offset were placed where the spectrogram
abruptly changed intensity. The second method used
force-aligned boundaries from the Montreal Forced
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Aligner [16] trained on the corpus under analysis.
The third method took the tap onset and offset as the
midway points between the maximum intensities of
the surrounding vowels and the minimum intensity
during the tap [8]. The final method placed the onset
and offset of the tap at the largest absolute values of
the spline-smoothed intensity slope in and out of the
tap, using methods from [12, 13].

When using automated measurements, outliers
that are likely measurement errors are removed
based on domain knowledge. To fairly compare
methods, we removed observations that we judged
to have impossible values in any of the measurement
methods. Spanish taps have average durations below
50 ms [3, 4], and virtually all taps reported in [5]
were under 150 ms. Therefore, we removed nine
observations with values of 200 ms or more and
seven with negative values. This left a total of 1,296
tokens for statistical analysis.

2.2. Statistical analysis

To analyze tap duration, we fit four hierarchical
Bayesian models (one for each measurement
method) with lognormal likelihoods using brms (v
2.18.0; [17]) in R (v 4.1.1; [18]). Priors were
weakly-informative in the context of Spanish taps,
and their assumptions were assessed through prior
predictive simulation. Following best practices [19],
we checked our priors’ influence on the posterior
by using wider priors, which resulted in identical
posteriors upon visual inspection.

The population-level predictors for our models
appear below. Group-level effects were varying
intercepts by speaker and correlated varying
slopes for all population-level effects by speaker.
Unigram and bigram frequencies from the corpus
under analysis were added to counts from the
Spanish OpenSubtitles corpus [20], and conditional
probabilities derived therefrom. We extracted
speech rate (syllables/second), surrounding vowels,
and lexical stress from force-aligned text grids.
Word length and content/function status were
derived from the corpus data file.

The following predictors were used in the models:
• Unigram freq. Log unigram frequency for

word containing tap
• Bigram freq. prev. Log bigram frequency for

word and previous word
• Bigram freq. fol. Log bigram frequency for

word and following word
• Cond. prob. prev. Conditional probability of

the word based on previous word
• Cond. prob. fol. Conditional probability of

the word based on following word

• Number of syllables Word length in number of
syllables (log-transformed)

• Function word Sum-coded, difference
between function (0.5) vs. content words (-0.5)

• Local speech rate Log average speech rate of
the utterance containing tap (syllables/s)

• Prev. vowel Preceding vowel, treatment coded
(/i,e,a,o,u/) with /e/ as reference level

• Fol. vowel Following vowel, treatment coded
(/i,e,a,o,u/) with /e/ as reference level

• Prev. stress Sum-coded, unstressed (-0.5) vs
stressed (0.5) previous vowel

• Fol. stress Sum-coded, unstressed (-0.5) vs
stressed (0.5) following vowel

To measure the similarity between posterior
distributions from the manual model to those from
the automated methods, we calculated overlap in
the population-level posteriors using the overlap()
function from package bayestestR (v 0.11.0; [21]).
We entered the overlap values as the dependent
variable in a hierarchical Beta regression predicting
posterior overlap with the manual model by method.
We included varying intercepts for predictors with
varying slopes by method.

3. RESULTS

For complete model summaries, the reader is
directed to the materials hosted in the repository,
which include the saved models for convenience.

3.1. Descriptive comparison of methods

Figure 1 contains visualizations that compare
manual duration to the three automated methods. In
the top row (A, B, & C) are scatter plots between
manual measurements on the y-axis and each
automated method on the x-axis. Marginal density
distributions are placed along the edge of the plots.
All automated methods were weakly correlated with
manual measurements. In Figure 1 D, we plot the
density distributions of the difference between the
manual measurement and the automated methods,
subtracting the automated duration from the manual
measurement for each token. The red dotted line at
zero is where the methods had the same value.

3.2. Factors affecting duration

For the model of manual durations, we report
in Table 1 the percentages of each posterior
that fell below, within, and above a Region of
Practical Equivalence (ROPE). A ROPE establishes
a minimum effect size the researchers consider
practically different from zero. We chose a ROPE
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Figure 1: Scatter plots for comparisons between
the manually measured durations and the
durations taken from forced alignment (A), the
midway method (B), and the slope method (C).
The density distribution of manual measurements
are along the right-hand y-axis of C. Pearson’s
correlation coefficients are printed on the
scatterplot for each comparison. D displays
density distributions of by-token differences.

of -0.05 to 0.05 for log-scale duration, which for our
model states that if the total effect of a predictor is
less than ≈ 1.2ms, then we consider the effect to be
negligible. This approach allows us to consider the
evidence from our model in terms of the probability
of both the existence and direction of an effect. An
effect below the ROPE is associated with shorter
taps, and an effect above the ROPE signals an
association with longer taps. For example, our
models suggest we cannot be sure if function words
contain shorter taps than content words, as roughly
68% of the posterior is within the ROPE, and 32% is
below it. We interpret this as a 2/3 chance that there
is no difference in tap duration for function words
and a 1/3 chance that function words contain shorter
taps. The posterior distribution did not extend above
the ROPE, meaning we are confident function words
don’t contain longer taps.

3.3. Modelling differences & posterior overlap

In Figure 2, we plot the population-level posteriors
from the models fit to durations from the four
methods. The mean of the posterior is plotted by
shape, and the two-stage lines visualize the most
probable 80% and 95% of each posterior. The
posteriors for the same predictor from the four
models show variable levels of overlap. For some
predictors (e.g., previous bigram frequency), all
methods have similar posterior distributions. For
others, there are larger differences between the
methods, sometimes in a way that could change

Table 1: Percentages of posteriors from the
model of manually-measured duration that fall
below, within, and above the established Region
of Practical Equivalence. The ROPE range of (-
0.05, 0.05) was divided by the range of continuous
predictors to evaluate the total effect size.

Predictor % Below/Within/Above
ROPE

Unigram freq. 2.8 / 26.1 / 71.0
Bigram freq. prev. 56.6 / 42.5 / 0.9
Bigram freq. fol. 17.3 / 76.2 / 6.5
Cond. prob. prev. 70.1 / 7.8 / 22.2
Cond. prob. fol. 91.8 / 7.2 / 1.0

Number of syllables 56.3 / 39.1 / 4.6
Function word 32.4 / 67.6 / 0.0

Local speech rate 98.9 / 1.1 / 0.0
Prev. vowel /i/ 0.0 / 10.0 / 90.0
Prev. vowel /a/ 4.7 / 95.3 / 0.0
Prev. vowel /o/ 23.8 / 76.1 / 0.1
Prev. vowel /u/ 22.4 / 73.3 / 4.3
Fol. vowel /i/ 0.0 / 0.0 / 100
Fol. vowel /a/ 0.7 / 93.0 / 6.3
Fol. vowel /o/ 0.0 / 40.2 / 59.7
Fol. vowel /u/ 83.1 / 15.7 / 1.3

Prev. stress 14.4 / 83.9 / 1.7
Fol. stress 5.3 / 93.4 / 1.3

model interpretation as compared to hand-measured
duration or compared to other automated methods.

The posteriors from the Beta regression
estimating overlap as well as group-level standard
deviations among the predictors are plotted by
method in Figure 3. We cannot be confident that
any automated method overlaps more or less with
our manual model, although the Slope method had
the highest estimated overlap (Figure 3 A). We are
confident the Slope method showed less variability
by predictor than the other methods (Figure 3 B).

4. DISCUSSION & CONCLUSIONS

The present study measured tap durations in
conversational Spanish and modelled this duration
with several predictors. As many taps lack
visible occlusions, we wanted to evaluate alternative
methods of measuring duration that could be
applied to more variable realizations. In predicting
manually-measured taps, most predictors are highly
uncertain regarding the presence or direction of
an effect, although we can rule certain patterns
out. Measurements from all automated methods
correlated similarly with manual measurements,
and the Slope method had the lowest absolute
error. The force-aligned durations were multiples
of 10ms with a floor at 30ms. The midway
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Figure 2: Posteriors for population-level effects
models of tap duration calculated by four
methods: manually-placed boundaries, force-
aligned boundaries, using the midway points of
the intensity curve, and using the intensity slope.
The thick line corresponds to 80% of the posterior,
and the extended, thin line corresponds to 95%.
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Figure 3: Posterior distributions of estimated
overlap with model estimates from manual
durations. The thick lines correspond to 80% of
the posterior and the extended thin line 95%. ‘A’
plots predicted overlap, zero meaning posteriors
do not overlap and one meaning posteriors are
identical. ‘B’ plots the standard deviations of
group-level effects (variation across predictors).

method had a similarly-shaped distribution to
manual measurements but with longer values, while
the Slope method had clusters at multiple modes.

In our model of manually-measured tap duration,
we can only generalize results to taps that have
a visible presence in a spectrogram. We only
claim with confidence that increased speech rate
is associated with shorter taps, and that taps are
longer before /i/ than before /e/. Other specific
effects show uncertainty regarding the presence of
a meaningful association, but effects in specific
directions are incompatible with our model. For
some effects, large percentages of the posterior
fall within the ROPE, indicating the most likely
interpretation should be that these predictors are not
associated with changes in tap duration.

When comparing estimates from our four models,
the patterns of similarity and difference varied
depending on the predictor. For some, like speech
rate, the effects from all models are reliably
negative, but some methods overestimate the effect’s
size, which is likely due to overestimating tap
duration overall. If we consider our manual model
the gold standard, other methods make both Type
S errors (getting the direction wrong) and Type M
errors (wrong effect magnitude). This assumption
is reasonable, as retrodictive checks showed the
manual model fit the data well, while other models
did not. Several predictors with posteriors centered
around zero in the manual model show reliably
negative or positive effects in one or more automated
methods (e.g., Bigram freq. fol, Fol. stress).
A potential explanation is that some variables are
related to intensity changes independent of duration.

From our model of posterior overlap, all
automated methods had less than 60% overlap with
the manual model for an average predictor. This
result is not reassuring, although the slope method,
which may have slightly more overlap, also showed
less variation across our predictors, possibly due
to having wider posteriors than the other methods.
Based on these results, we cannot recommend these
automated methods be used to measure Spanish
taps. We also must question the reliability of
measuring segment duration using intensity more
generally, and recommend researchers evaluate their
measurement methods as standard practice.

Hand-correcting data is costly, but building
knowledge on results skewed by measurement error
will be more so. Sharing hand-corrected data
publicly will allow for data to be used by the wider
research community to answer research questions
and generate informative priors that allow them to
use their data more efficiently.
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