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ABSTRACT

This paper describes an approach for determining
the dimensions of quality for state-of-the-art
synthetic speech. We propose that current evaluation
metrics do not fully capture the meaningful
dimensions of text-to-speech (TTS) and voice
conversion (VC) systems. In order to develop a
revised paradigm for meaningful evaluation, we
conducted two experiments. First, we determined
descriptive terms by querying naïve listeners on
their impressions of modern TTS and VC systems.
In a second experiment, we refined these terms
into dimensions of quality and similarity by
showcasing a consolidation procedure of manual
clusterings. The resulting dimensions contain the
standard evaluation categories of “intelligibility”
and “naturalness” for both conditions. We could
additionally discern dimensions of “tempo” and
“demographics” in both domains. The final two
dimensions as well as the relationships between
categories proved to be different between TTS and
VC, suggesting the need for modified evaluation
scales based on the target construct.

Keywords: voice quality, voice conversion, text-to-
speech, dimensions of quality, evaluation

1. INTRODUCTION

Phonetic sciences often lean on speech technology
to generate stimulus data or derive processes of
speech production and perception [1, 2, 3]. It has
been shown, however, that the quality of synthetic
speech systems not only varies, but might also
generate voice quality features that do not exist
in natural voices. Consequently, there exists a
need for evaluating the quality of different speech
technology systems regarding their suitability in
phonetic research. Traditionally, synthetic speech
has been evaluated primarily on the dimensions
of “intelligibility” and “naturalness” [4, 5] based
on ITU-T P.85 [6]. It has been questioned
whether these two dimensions are capable of
exhaustively capturing the full extent of what

constitutes a good synthesis [7, 8] and whether
multidimensional approaches might yield more
accurate representations of quality [9]. It has also
been shown that the specific wording of a given
evaluation task has a great influence on the resulting
Mean Opinion Score (MOS) with or without context
[10, 11]. Finally, it has been pointed out that
the target construct might differ between different
applications of speech synthesis [12]. To conciliate
these findings with our research, we conducted
experiments in two different domains of speech
synthesis. The first one concerns pure text-to-
speech, with the latent construct being “quality”,
the second one represents voice conversion, with the
latent construct being “similarity”.

2. METHODS

To elicit latent dimensions of a given construct, it
is common practice to take preconceived items of
potential attributes and reduce them into smaller
subsets using factor analysis [8, 13]. To counteract
an inherent researcher bias, we opted to follow
an inductive approach of item-generation and
complement it with a manual clustering of multiple
participants to determine the underlying dimensions.
The only step requiring expert knowledge in the
newly proposed paradigm is the naming of resulting
dimensions, rather than pre-selecting scales based
on the generated items, as suggested in behavioral
science and psychology [14, 15, 16]. The reasons
for developing this method were two-fold: Firstly,
the new procedure allowed us to use the whole
set of terms elicited during the first experiment
without introducing bias by pre-selection. Secondly,
exploratory factor analysis is always dependent
on the audio samples used during the weighting
experiment [17]. Having participants cluster the
semantic space directly instead of using an audio
sample as an intermediate eliminates the chance of
having an unrepresentative token.

2.1. Experiment 1: Terms of quality
80 participants (40f/40m, L1 English) were recruited
over the crowdsourcing platform Prolific [18]. They
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TTS-system training corpus gender
vits [21] vctk m

silero-tts [22] private m
tacotronDDC+hifiGAN [21] sam f

tacotron2+wavegrad [21] ek1 f
glow-tts+multibandmel [21] LJ f

microsoft neural private f
google wavenet private m
amazon polly private m

Table 1: TTS system types used for generating
the audio samples in the elicitation experiment.

were instructed to listen to a provided audio sample
and note down terms that they felt best described
its quality. There was a constraint to supply at
least three different terms for each sample. The
experiment was split into two subsets with 40
participants each. In the first subset the audios were
constructed using 8 different neural state-of-the-art
systems with varying vocoders, balanced by target
gender. The different system architectures are listed
in Table 1. They were chosen to generate a broad set
of different architectures employed in current-day
research and real-life application. Each system read
the phonetically balanced "caterpillar story" [19],
with four rotating sentences being presented to each
participant. The experiment yielded 387 different
descriptions of the quality of synthetic speech.

The second subset elicited similar terms of
quality for the domain of voice conversion. Here,
the data of the Voice Conversion Challenge 2020
(VCC2020) [20] served as a basis to elicit
dimensions of synthetic voice similarity. The
participants were asked to listen to a voice
conversion sample and its corresponding natural
target audio and instructed to note down terms that
they felt best described similarities or differences
between the samples. The dataset consisted of
a subset from the VCC2020 data containing 33
different voice conversion systems. The subset was
stratified by source and target gender, as well as the
target content. Each participant was presented with
one sample pair from each gender combination with
each audio pair containing one of the 4 different
contents. The voice conversion experiment yielded
359 unique terms of similarity.

2.2. Experiment 2: Clustering of terms
To aggregate the elicited terms of quality into
meaningful dimensions, a second experiment was
conducted. 10 Participants (5f/5m, L1 varied) were
presented with a randomized list of all terms of
quality for one domain. They were instructed to
group those terms into 10 clusters of varying sizes
on a graphical two-dimensional interface. The
clusters were to be created according to the terms’

semantic similarity, with closer terms being more
similar. The participants were additionally asked to
denote group similarity using 10 predefined colors.
There were 5 participants each for both the text-to-
speech and voice conversion terms. To ensure some
level of English proficiency, a self-assessment pre-
test was carried out based on the bilingual language
profile of [23]. The experiment lasted about 2
hours, and the participants were instructed to take
a mandatory break of 15min in between to avoid
fatigue. The resulting clusters were evaluated both
in the distance spacing and the color groupings
denoting semantic similarity.

2.3. Finding latent Categories/Dimensions
The coordinate data were first normalized via min-
max scaling, as some of the participants did not
use the whole space. To find a representative
view of their average groupings, a distance matrix
was computed for each participant, denoting the
relationship (distance) between two terms. Given
those matrices, we obtain a mean Euclidean distance
matrix by averaging across participants, from which
we recalculate the plane coordinates by eigenvalue

decomposition of Mi j =
D2

1 j+D2
i1D2

i j
2 , where Di j

denotes the average Euclidean distance between the
i-th and j-th term [24]. This yields a single average
representation of all terms in 2D space.

Regarding the color assignments, the participants
each colored the terms in a self-defined order.
This means that (1) they might not assign the
same color to the same latent group (indicated by
a large overlap of terms in the colored groups)
and (2) terms might be assigned to different latent
groups across participants. To solve (1), we
compute the optimal cluster (color) match between
participants. The problem was first turned into an
assignment problem by counting how many terms
were assigned the same 5-tuple of colors, and
then transforming those counts into a cost matrix:
Higher cost indicates better color matching. The
resulting assignment problem was then solved by
employing the modified Jonker-Volgenant algorithm
[25]. However, the optimal assignment obtained
this way is not universally valid as it may contain
tuples where a specific color for a single participant
is reused. To compensate for this, we used a
greedy approach to prune tuples in the cost matrix
by colors which already had been assigned in a
previous step to a given participant. In each step,
we compute the optimal assignment from the pruned
cost matrix, take out the tuple with the highest
cost, and perform the participant-color assignment
followed by color pruning until the cost matrix
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contains no more valid color tuples. To solve (2),
we performed a color-matched majority voting per
term: If the majority of the participants assigned
the same color to the term, it was also assigned
this color. If the participants could not agree on
a color, the term was dropped from the average
representation. Given the newly clustered and
reduced set of terms, we determined the centroids
of all clusters and derived a measure of confidence
for each term by calculating the Euclidean distance
from its group centroid. Summing these across
groups and inverting them yields a measure of
internal certainty. An external certainty measure is
derived by summing the distance of a given centroid
to all other groups. These measures are variations of
the subcomponents of the Calinski-Harabasz Index
for measuring cluster dispersion [26].

3. RESULTS
Figure 1 shows the average distance results for
the pure text-to-speech evaluation. The majority
voting procedure only kept 33% of the original
382 terms. The most distinct clusters were
those pertaining to demographic information of the
inferred speaker as well as those regarding human
likeness. The intelligibility group exclusively
contains items describing the audio quality and
clarity pointing to the fact that modern TTS
systems do not suffer traditional understandability
problems. This clarity dimension overlaps with the
one regarding speech tempo, which might reflect the
fact that some of the “tempo” terms actually describe
difficulties with intelligibility due to speed. The
voice conversion results are visualized in Figure 2.
For this domain, the majority vote left 51% of data
points. Their respective distance certainty measures
are shown in Table 2. As is evident, the clearest
group concerned terms relating to demographic
associations with the perceived speakers, such as
“accent” or “gender”. The worst category regarding
external and internal certainty contained terms
regarding voice quality like “tone”, “softness” or
“vocal fry”. Interestingly, the participants seemed to
clearly distinguish between terms of “intelligibility”
and “naturalness” regarding their color assignments,
but associate and conflate them in their distance
markings. The same seems to be true of the
categories relating to “content” and “expression”.

4. DISCUSSION
The amount of variability in the participants’ group
assignments highlights the need for an objective
procedure. They clearly differed in their category
assignments as was evident by low overall Jaccard

Domain Category Ext. certainty Int. certainty

VC

expression 0.35 0.84
intelligibility 0.05 0.22
naturalness 0.08 0.82

voice quality 0.0 0.0
tempo 0.52 0.65
content 0.54 0.85

demographics 1.0 1.0

TTS

pleasantness 0.24 0.35
emotion 0.0 0.07

audio quality 0.14 0.41
tempo 0.08 0.64
clarity 0.11 0.0

human-likeness 0.93 1.0
demographics 1.0 0.54

Table 2: External and internal certainty measures
for each category as calculated by the distance
to other categories and averaged distance to the
centroid, respectively.The values are scaled to
range between 0 and 1 for easier comparison

agreement scores of 32% in the TTS condition
and 31% in the VC condition. This underlines
our premise that having the reduction of original
items into scales done by a single individual is
questionable. The findings regarding the dimensions
of quality are very much in line with the current
status quo. The main categories we could elicit
in the domain of speech technology did include
the often-tested intelligibility and naturalness, while
additionally uncovering that many laypeople seem
to take perceived demographic information into
account when judging quality. The space measures
also allow us to relate the revealed dimensions
to each other. For the TTS domain, we can
discern that the human-likeness does seem to
correspond to evoked emotional qualities and audio
distortions, while intelligibility conflates with the
perceived tempo and overall pleasantness. In
the VC condition, we see semantic associations
of naturalness, intelligibility, and voice quality
features and a clear separation of tempo terms.
This first step in the search for the underlying
dimensions to modern day synthetic speech opens
up many directions for future research. In
particular, a direct comparison of our procedure
and a classical Exploratory Factor Analysis is
still pending. Post-experiment feedback from the
participants in the second experiment revealed that
they felt constrained by the two-dimensional space
to accurately model the group relationships. While
it would be feasible to extend the experimental setup
and analysis procedure by a third dimension, care
should be taken to ensure naïve participants are
actually able to navigate a three-dimensional space
on a digital interface. The dimensions proposed here
could also be compared to quality dimensions of
natural voices such as those described in [27, 28].
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Figure 1: Relative distance assignment of text-to-speech terms averaged over all participants. Color denotes group
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