Foreign-accented phonetic detail in L1 word processing: L1 Spanish L2 English listeners and English-accented Spanish

Hadley Forst¹, Miquel Simonet²
University of Arizona¹,²
hforst@arizona.edu, simonet@arizona.edu

ABSTRACT
This study investigates to what extent English-like VOT in Spanish words affects lexical access for L1 Spanish listeners with English as an L2. Will English-accented Spanish words be recognized as easily as words with Spanish-like VOT? L1 Spanish L2 English bilinguals born and raised in Mexico completed an auditory lexical decision task online. Participants heard /p/-initial Spanish words and nonwords featuring English-like (long-lag) VOT or Spanish-like (short-lag) VOT and indicated whether each item was a real word or not. Results suggest that, for these listeners, English-like VOT in Spanish words causes a processing delay at best, with significantly slower response times to words with English-like VOT than words with Spanish-like VOT, and at worst prevents lexical access entirely, as Spanish words with English-like VOT were accepted as real words in fewer than half of the trials. These findings indicate that, for these bilinguals, L2 phonetic detail is not included in L1 word entries.

Keywords: accented speech perception, phonetic detail, lexical representation, bilingualism, Spanish

1. INTRODUCTION
It is well known that accented speech can be challenging to understand. A growing body of evidence suggests that phonetic detail is stored in the lexicon [1-6], which helps explain why phonetic variation, like that in accented speech, affects lexical access [7-9]. When a listener is confronted with phonetic variants which deviate from the ones they are accustomed to hearing, mismatches between the signal and information in the listener’s lexical representation or expectations may cause processing delays and interfere with lexical access [10-12]. Low accuracy on word judgment tasks and delayed lexical access have been found in studies with monolinguals listening to foreign-accented speech [10, 13], L1 regional accents [6, 12] and artificially controlled accents [14]. However, when confronted with variation that is familiar, such as after exposure to a particular accent in the lab, or when listening to an accent that one is accustomed to hearing, the processing delay and interference decreases or disappears [6, 10-14].

Studies on pronunciation and dialect variant recognition have reached similar conclusions: experience with certain types of phonetic variants reduces or eliminates any processing delay present for listeners initially unfamiliar with those variants. This experience with variant phonetic forms contributes to the formation of lexical representations that are sensitive to phonetic detail [1-6]. For example, hearing common pronunciation variants of words—such as the casual pronunciation “cenner” for the English word center—does not cause a delay in lexical access when compared with hearing the canonical form “center” [5]. Furthermore, stronger activation of the target word may be triggered by the more frequent variant, indicating that lexical entries store detailed phonetic information, and that a single lexical entry can be linked to several phonetic forms. Similarly, there is evidence that, due to their linguistic backgrounds, speakers of some dialect varieties may have multiple representations for dialect variants (such as “slender” for General American English and “slenda” in a regional New York dialect of English) and can activate the intended word in their lexicon via either phonetic variant, whereas speakers of other dialect varieties cannot [6]. For researchers interested in bilingual speech processing and representation, these findings suggest that some bilinguals may possess multiple representations of words in their lexicons, including accented and unaccented phonetic forms, just as some bidialectal speakers do.

Research into second-language (L2) perception of accented speech also reveals a processing benefit associated with accent familiarity [15-17]. Weber, Broersma and Aoyagi [17] found that while listening in L2 English, native (L1) Dutch listeners processed Dutch-accented English words faster than Japanese-accented English words. The authors conclude that linguistic experience with the phonetic features of a particular accent, such as being a speaker and frequent overhearer of the accent in question, allows for faster lexical access and word recognition of accented speech. In a different study of bilingual word recognition, Shea [18] found that L1 English L2 Spanish bilinguals showed similar levels of lexical activation when hearing both English-accented and Spanish-accented variants of Spanish words (words
due to their relatively low experience with English-accented Spanish, we hypothesized that our L1 Spanish listeners would show longer response times (RTs) for word tokens featuring long-lag VOT than for word tokens featuring short-lag VOT.

2. METHOD

2.1. Participants

Forty-five participants were recruited online through the participant recruitment platform Prolific [20]. Participants were L1 Spanish L2 English speakers who were born and raised in a monolingual Spanish environment in Mexico and had never resided outside of Mexico for more than six months. Scores from the History and Attitudes modules of the Bilingual Language Profile questionnaire [19] indicate that all participants were dominant in Spanish. Responses to the English proficiency module of the BLP [19] indicate a median self-assessment of 4.5 on a scale of 0−6 (0 = not well, 6 = very well) when asked how well they speak, understand, read, and write in English ($M = 4.3, SD = 0.9, min = 2.25, max = 6$).

2.2. Stimuli

Diisyllabic /p/-initial Spanish words with penultimate stress were used as auditory stimuli for a lexical decision task. The 20 most frequent words meeting these criteria were chosen from the stimuli search engine NIM [21], based on the relative frequency-per-million-words for each word. To create a balance between ‘yes’ and ‘no’ responses in the lexical decision task, 20 disyllabic /p/-initial pseudowords were generated, as well as 160 fillers. The fillers were evenly divided between real words and pseudowords, all disyllabic and beginning with vowels, fricatives, nasals, laterals and stops, including /b/ and /p/.

An English-dominant Spanish-English early bilingual talker (with phonetic training) was recorded in a sound-attenuated booth using professional equipment at a sampling rate of 44.1 kHz. The talker repeated each item in the carrier phrase “__ también es palabra” (“__ is also a word”) three times each in random order. After recording all items without any specific instructions regarding pronunciation, the talker was asked to produce the critical words and pseudowords an additional three times but was instructed to “exaggerate” the VOT of the initial /p/ to imitate an aspirated “English” word-initial [pʰ].

Stimuli were resynthesized in Praat [22]. The VOT values of the initial /p/ of the 40 critical items (20 words and 20 pseudowords) were manipulated using a progressive cutback and replacement method [23]. This method begins with recorded minimal pairs, such as [p]elo and [pʰ]elo. The VOT was then...
adjusted systematically for each item such that all [p]-
initial items had a VOT of 10 ms (representative of a
short-lag, Spanish-like VOT) and [pʰ]-initial items
had a VOT of 60 ms (representing a long-lag,
English-like VOT). Trials were presented in random
order, with all critical words, nonwords and fillers
included in the same list.

2.3. Procedure

The experimental activities were completed online by
participants in Mexico. Participants were recruited
through Prolific [20], and the experiment was
designed with and hosted by Gorilla [24]. While the
quality of online data collection cannot be
guaranteed, participants were encouraged to
participate from a quiet and distraction-free location
and were required to use headphones, which was
confirmed through a headphone screening task [25].
After completing a brief demographic screening and
passing the headphone check, participants completed
an auditory lexical decision task, followed by the
Bilingual Language Profile questionnaire [19].

Each trial of the auditory lexical decision task
began with the presentation of a red fixation cross in
the center of the computer screen for 1 s. When the
fixation cross disappeared, an auditory stimulus was
presented, and participants responded by keypress.
Participants were instructed to decide, for each
stimulus, whether they believed the item was a real
Spanish word. They indicated their decision by
pressing the ‘j’ key for ‘yes’ or the ‘f’ key for ‘no’
and were instructed to respond as quickly and
accurately as possible. Each trial ended upon the
key press, or after 3 s if no response was made, and the
fixation cross would reappear, signalling the start of
a new trial. There were 5 practice trials, followed by
240 trials presented in 2 equal blocks, with one 30 s
break in the middle.

3. RESULTS

All participants heard each critical word twice during
the lexical decision task, once with short-lag VOT
and once with long-lag VOT. Because hearing a word
a second time results in speeded lexical access due to
priming [26], only responses to the first encounter
with each lexical item are discussed in this paper.
Additionally, only data from participants with
accuracy greater than 80% on the filler items (both
words and pseudowords) was included in the
following analyses to ensure participant engagement.

3.1. Word Acceptance Rates

An analysis of the proportions of ‘yes’ responses to
real words with differing phonetic detail revealed
that, overall, word acceptance rates were low for
critical words. English-accented, [pʰ]-initial words
were judged to be real Spanish words less than half
the time, with a mean word acceptance rate of 43.1%,
95% CI [37%, 48%]. Participants rejected words with
English-accented VOT more often than they accepted
them. For short-lag VOT words, mean acceptance
was higher, at 60.8% [55%, 66%], but still rather
low—filler words were accepted at a rate of 90.3%
[89%, 92%]. A paired t-test on logit-transformed
word acceptance rates yielded a significant difference
between the mean acceptance rate for word tokens
presented with short-lag VOT and those presented
with long-lag VOT: \(M_{diff} = -0.861, 95\% \text{ CI } [-1.22,-0.5], t(44) = -4.80, p < 0.001, \text{ Cohen’s } d_{avg} = -0.85,
95\% \text{ CI } [-1.25,-0.49], r = 0.28. \) Participants reliably
rejected words with English-accented VOT more
often than they rejected words with Spanish-accented
VOT. Note, however, that word acceptance for all
critical words, including Spanish-accented tokens,
was surprisingly low relative to filler words.

3.2. RT as a function of VOT

Reaction time measured from stimulus onset was
analyzed for ‘yes’ responses to see if VOT variation
affected the speed of lexical access. Responses to
short-lag VOT words were faster (1279 ms, 95% CI
[1236, 1323]) than responses to words with long-lag
VOT (1348 ms, 95% CI [1290, 1406]). Mean RT to
filler words was 1216 ms [1175, 1257]. A paired t-
test revealed that the mean log RT to words with
short-lag VOT was significantly faster than mean RT
to those with long-lag VOT: \(M_{diff} = 0.054, 95\% \text{ CI }
[0.016, 0.091], t(44) = 2.9, p = 0.005, \text{ Cohen’s } d_{avg} =
0.42, 95\% \text{ CI } [0.14, 0.72], r = 0.75. \) Thus, when participants heard Spanish words with long-lag VOT,
they took relatively longer to find a match in their
lexicon. Note, however, that RTs to filler words were
on average even faster (\(M = 7.08, 95\% \text{ CI } [7.05,7.12]\)) than to short-lag VOT words.

3.3. RT to long VOT words by word judgment

When words with long-lag VOT were accepted,
listeners experienced a relative delay in lexical
retrieval. However, words presented with long-lag
VOT were rejected nearly 60% of the time as
nonwords. Because we are interested in the full
picture, it is also important to examine the speed of
rejection for these words. Did listeners take just as
long to reject [pʰ]-initial words as they did to accept
them?

Mean RT in trials where long-lag VOT words
were accepted as words was slower (\(M = 1358 \text{ ms,
95\% CI } [1288, 1428]\)) than that in trials where those
words were rejected as nonwords (\(M = 1258 \text{ ms, 95}\%\)
CIs [1200, 1316]). A paired t-test revealed that mean log RT to words with long VOT was significantly slower for trials in which participants responded ‘yes’ than for trials in which participants responded ‘no’: $M_{\text{diff}} = -0.075$, 95% CI $[-0.126, -0.023]$, $t(44) = -2.92$, $p = 0.005$, Cohen’s $d_{\text{avg}} = -0.49$, 95% CI $[-0.85, -0.16]$, $r = 0.35$. Thus, participants were faster when rejecting long-lag VOT words than when accepting them. Not only were participants more likely to reject [pʰ]-initial Spanish words than accept them—recall the acceptance rate for long VOT words was only 43%—but they also took less time to reject these items than they did to accept them.

4. DISCUSSION AND CONCLUSION

This study examined to what extent English-like VOT in Spanish words affects lexical access for L1 Spanish L2 English speakers. It was hypothesized that these listeners would show sensitivity to the differences in phonetic detail between the English-accented and Spanish-accented stimuli, and that the processing of English-accented words would result in a delay when compared with the processing of Spanish-accented words. Nevertheless, since these participants are Spanish-English bilinguals, it was possible that cross-language phonetic interactions would modulate the speed of word processing even in their L1.

An analysis of word acceptance rates revealed that items with long-lag VOT were accepted as words only 43% of the time, indicating that the presence of long-lag VOT interfered with lexical access for these listeners—most English-accented words were not accepted as words at all. In these cases, the mismatch between the phonetic detail in English-accented Spanish words and listeners’ lexical representations was great enough to prevent lexical retrieval. L1 Spanish L2 English bilinguals from monolingual Spanish backgrounds who have never lived amongst L1 English L2 Spanish speakers in a bilingual environment did not easily recognize English-accented Spanish words as real words, at least not in a context like the one in our research study. Additionally, when these English-accented words were recognized as words, they were accepted far slower than their Spanish-accented counterparts, strengthening evidence of interference with lexical access.

The speed of lexical access is modulated by the phonetic detail in the acoustic signal, and these listeners do not appear to have had sufficient experience with English-accented Spanish to have formed functioning representations of Spanish words beginning with [pʰ] that would have allowed for more rapid lexical access of the base word. This suggests that phonetic detail is stored in lexical entries, as processing words with unfamiliar detail delayed lexical access in comparison to processing words with familiar detail. Additionally, an analysis of responses to long-lag VOT word tokens indicated that RT in trials where participants responded ‘yes’ was significantly slower than RT in trials where participants responded ‘no’, revealing that these participants were quick to reject English-accented words and slow to accept them. Thus, there was no evidence that L2 phonetic detail was associated with the phonolexical representation of L1 words for these participants, suggesting that phonetic detail is mostly language-specific for these bilinguals.

Evidence from the lexical decision task indicates that phonetic detail is indeed stored in the lexicon, results that align with previous studies [1-6]. For these listeners, the phonetic detail in the English-accented Spanish words delayed lexical access or even prevented it completely. This is not surprising, given that these listeners are L1 Spanish speakers raised and living in Spanish-dominant environments. Previous research points to the role of experience with a given accent, and while these listeners may be implicitly familiar with some phonetic characteristics of English due to their experience as L2 learners, they do not show evidence of having had enough experience with English-accented Spanish to form “accented” lexical representations for L1 words.

This raises the question of whether Spanish-English bilinguals living in bilingual environments would behave differently. L1 English L2 Spanish late bilinguals living in the US are likely to be exposed to English-accented Spanish frequently, both in the speech of their classmates and in their own productions [27]. It is reasonable to hypothesize that they might show more acceptance of English-accented Spanish words if they have had the opportunity to form representations of this type of phonetic variants. There are also many Spanish-English early bilinguals living in the US who were raised bilingual and have had ample experience with the phonetic features of both Spanish and English, with frequent code-switching. Would this population have additional representations of English-accented Spanish words and accept them? Or would they show processing delays? The present study has outlined a background against which to compare the behaviour of these bilingual populations.

5. ACKNOWLEDGMENTS

This work was funded in part through a University of Arizona Graduate and Professional Student Council Research and Project (ReaP) Grant awarded to the first author.
6. REFERENCES

