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ABSTRACT

There are a variety of statistical methods for
generating likelihood ratios (LR) from continuous
acoustic data for the purposes of forensic voice
comparison (FVC). Few methods exist for
evaluating voice evidence where the data are
discrete and those that do, remain largely untested.
The pattern of filled pause (FP) occurrence in speech
is a behavioural characteristic that is potentially
individuating and is an example of discrete voice
evidence. This paper evaluates the evidential value
of FP occurrence (um /5:m/, uh /5:/) in Australian
English (AE) using a Poisson-Gamma model for
LR estimation. Results indicate that while speakers
do exhibit idiosyncratic patterns of FP occurrence,
the discriminatory potential of the feature set is
limited. The paper suggests that including a larger
set of speech disfluency-based features may yield
improvement, as well as fusion with acoustic
measurements. Limitations associated with the
statistical model are also canvassed.
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1. INTRODUCTION

In a likelihood ratio-based (LR) approach to
evidence evaluation [1] [2], forensic material (e.g
DNA, fingerprints, voice recordings) from a known
source and unknown source are compared with the
goal of determining how much more likely the two
are from the same-origin (Hp) vs. different origins
(Hd). Given evidence (E) in the form of forensic
sample(s), Hp and Hd are evaluated as ratio of
conditional probabilities: p(E|Hp)/p(E|Hd)) (i.e.
the LR term in Bayes Theorem). In FVC, E is
usually quantified by set of measurements from
continuously-valued acoustic features. Typically
these are either measurements based on phonetically
informed features (e.g. vowel formants) or
automatic acoustic features derived from signal
processing techniques (e.g. MFCC). Acoustic

features capture speaker-specific characteristics
associated with anatomical differences between
vocal tracts. A variety of methods for LR estimation
exist for continuous acoustic variables, including
MVKD [3], GMM-UBM, PLDA i-vector and x-
vector LR estimation [4].

Speaker-specific characteristics are also reflected
in longer term patterns of language use and
are quantifiable discretely; either in terms of
their presence or absence in speech, or by the
frequency of their occurrence. These characteristics
include things like a speakers’ habitual lexical and
syntactic choices, discourse patterns, conversational
style, patterns of speech disfluency and so
forth. Auditory phonetic features that specify
pronunciation differences between speakers (e.g.
/sIti/ vs. /sIRi/ in AE), delineate regional accents
and non-obligatory phonological processes are other
examples. Little attention has been given to
evaluation of discrete voice data within the LR
framework. In [5] the evidential value of lexical
choice in AE was evaluated. [6] evaluates the
occurrence of clicks (paralinguistic/discourse level
usage) in British English. In this paper a Poisson-
Gamma LR model described in [6] is used to
evaluate the evidential value of AE FP occurrence
for the first time. The aim is to determine how well
can we distinguish one speaker from another based
on the occurrence of ums and uhs in speech applying
an LR-based approach to evidential evaluation. In
doing so, it builds previous work by evaluating
a new feature type for FVC, as well as on [7]
by demonstrating a feature-based procedure for LR
estimation for discrete data.

1.1. Speech disfluency and forensics

Disfluency is a natural part of spontaneous speech.
Speaker’s hesitate, repeat words, or parts of words,
and use various other strategies to delay or prolong
speech. FPs (e.g ums and uhs) are a category of
this phenomenon for which various explanations
exist. There is evidence FPs serve pragmatic and
discourse functions [8][9]. For instance, FPs are
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often used to indicate when one is about to start
or continue speaking. Cognitive studies suggest
FPs are a strategy that allow time for a speaker
to synchronize cognitive and speaking processes
[9], as well as potentially play a role in listener’s
language processing [10]. The occurrence of
FPs also appear to be linked to indexical factors
such as age, sex and education [11]. Forensic
phonetician’s interest in FPs stems from evidence
that individual speakers vary in the choice of filler
words, patterns of occurrences [12][13] as well as
acoustically [11]. While there are several studies
evaluating the acoustic properties of FPs within
the LR framework [11][14][15], there is only one
evaluating FP occurrence [7]. A shortcoming of
[7] though is that it employs a score-based LR
estimation method, which only accounts for the
similarity, not the typicality of forensic samples
[16][17][18]. An alternative is a feature-based
approach which estimates LRs directly from the
feature values and incorporates typicality, such as
the Poisson-Gamma model evaluated here.

2. METHODS

2.1. Data, pre-processing & feature extraction

The data consists of 208 speech transcriptions
from 104 normally fluent AE male speakers
(2 x non-contemporaneous recording sessions
per speaker). Transcriptions were made from
unscripted conversational speech obtained from
[19]. The recordings varying between 3-5 minutes
for each conversation-side. For these experiments
transcriptions of the first 2 minutes are used. Counts
of um, uh and total FPs (i.e. the total count of both)
were vectorised separately for each speaker and each
transcription. Summary statistics of tokens elicited
from each session are given in Table 1.

recording feature x sd range
1 uh 4.95 4.45 0−22
1 um 6.63 4.85 0−26
2 uh 4.56 4.19 0−20
2 um 6.82 5.53 0−24

Table 1: FP occurrence statistics (N speakers =
104)

2.2. Poisson-Gamma LR model

The following description is adapted from [6]. Let
x = (x1, ...,xkx) be the count of ums or uhs from the
suspect (or known) recording and y = (y1, ...,yky)

those from the offender (or unknown) recording.
Counts of each are taken from consecutive time
periods (in minutes) from the recordings, with kx
and ky representing the number of periods sampled
in each. To estimate the LR we are concerned
with two quantities from the voice evidence tx and
ty, which are the total number of occurrences from
the recordings and given by tx = ∑

kx
i=1 xi and ty =

∑
ky
i=1 yi. Assuming the counts in consecutive periods

are independent and follow Poisson distribution (the
implications of this assumption are discussed in
Section 4), evidential value can be evaluated using
the Poisson-Gamma LR model given in 1.

(1)

LR=
Γ(α + tx + ty)Γ(α)

Γ(α + tx)Γ(α + ty)
∗
(β + kx)

α+tx(β + ky)
α+ty

β α(β + kx + ky)α+tx+tty

where, Γ is a gamma distribution defined by α

(shape parameter) and β (rate parameter). The Γ

distribution assesses the typically of samples under
comparison and is estimated using reference data
from the relevant speaker population. In these
experiments α and β were estimated via maximum
likelihood estimation.

2.3. Testing and validation

The following features are evaluated: (1) counts of
um; (2) counts of uh (3) total FP count (um + uh)
and; (4) fused um and uh. The scores estimated from
the Poisson-Gamma model were calibrated using a
logistic-regression procedure [20]. In the case of (4)
the procedure simultaneously calibrates and fuses
LRs. The data were randomly split into test (20%),
training (40%) and reference data (40%) and 5-fold
cross-validation applied. The test data was used
to simulate suspect and offender comparisons, the
reference data to assess the typicality of the samples
being compared and the training data to calculate
weights for the calibration-fusion procedure. All
features were tested using 60 and 120 seconds of
netspeech.

2.4. Evaluation

The log-likelihood ratio cost function (Cllr) [20]
and the Equal Error Rate (EER) are used to
evaluate performance. Cllr is an information-
theoretic measure of the validity (accuracy) of voice
comparison systems. Cllr can be decomposed into
two additional measures Cmin

llr and Ccal
llr (Cllr = Cmin

llr +
Ccal

llr ) which tell us the contribution of discrimination
and calibration loss to the overall performance. The
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Cllr value is a gradient metric which is small when
LRs support the correct hypothesis (e.g. same-
speaker comparisons are assigned an LR greater
than 1) and increases as the magnitude of counter
factual LRs do. A Cllr = 0 indicates perfect accuracy.
Accuracy is worse as Cllr approaches and exceeds
1. The EER is a statistic commonly used in the
evaluation biometric systems and is the point at
which the false acceptance (or false positive) and
false rejection (false negative) rates are equal; the
lower the EER, the better the accuracy.

3. RESULTS

Table 2 shows the Cllr and %EER values for 60 and
120 seconds of net speech for each of the feature
parametrisations described in Section 2.3. Results
are mean values following a 5-fold cross-validation.
The Cllr values are rather high, ranging between 0.94
and 0.98 bits. Cllr values are less than one though,
indicating that some speaker-specific is present in
FP occurrence albeit very little given values are
close to 1. Commensurate with this result, the high
%EERs reflect rather poor discrimination accuracy;
the average %EER is 36.76%. The best performance
is achieved via fusing FP features (um and uh) (Cllr
= 0.94). The same result is obtained for both 60 sec.
and 120 sec. of net speech. However, a slightly
lower %EER is achieved (33.98% vs. 34.16%)
and discrimination performance is marginally better
with 120 sec. (Cmin

llr = 0.8 vs. 0.83).

Table 2: Performance metrics for FP features for
60 and 120 seconds of net speech.

.

feature Cllr Cmin
llr Ccal

llr %EER
60sec. fused 0.94 0.83 0.11 34.16

uh 0.96 0.85 0.11 38.79
um 0.98 0.89 0.09 38.93
total 0.96 0.85 0.10 36.13

120sec. fused 0.94 0.80 0.14 33.98
uh 0.95 0.84 0.11 35.81
um 0.98 0.87 0.12 37.49
total 0.98 0.84 0.15 38.86

The amount of net speech used does not result
in meaningful performance gains. The additional
minute of speech data only yields improvement in
Cllr for uh and it is very slight - only 0.01 bits (Cllr =
0.96 vs. 0.95). For um Cllr is the same (0.98) and for
total FPs it is worse (0.96 vs. 0.98). We do though
see an improvement in discrimination performance
in the 120 sec. condition, where Cmin

llr values overall
are lower. However, this improvement comes at

the cost of poorer calibration which is evident from
the higher Ccal

llr values obtained. Overall, it appears
the strength of evidence obtained from FP features
is rather weak. This can be appreciated in more
detail via the Tippett plot in figure 1 which shows
the cumulative proportion of same- and different
speaker trials for 120 secs. of speech data for the
best performing settings (i.e. fused, 120 secs.).

Figure 1: Tippett plot showing Log10LRs from
SS (red line) and DS (blue line) comparison trials
based on fused FP features (uh + um) from 120
seconds of net speech.

In figure 1 blue lines converging from the left
are LRs from different-speaker trials (DSLRS) and
red lines converging from the right are same-speaker
trials (SSLRs). The y-axis shows the cumulative
proportion of trials plotted as a function of Log10LR
on the x-axis. The minimum Log10LR achieved
for DS comparisons is −0.69 and overall a large
proportion of Log10LR from the DS comparisons
are close to the decision threshold (i.e. 0).
This indicates most comparisons yield very weak
support for the DS hypothesis. The magnitude
of Log10LRs supporting the incorrect hypothesis
(i.e. Log10DSLRs greater than zero) are also
relatively large (the maximum Log10DSLR = 2.18).
The situation is slightly less severe for the SS
comparisons in that the magnitude of counter factual
SSLRs is less (minimum SSLR = −0.58). However,
the strength of evidence for correctly assessed SS
pairs is weak. The maximum Log10SSLR achieved
is 1.87). Figure 2 shows Tippett plots from the voice
comparisons for individual FP features. Figure 2A
and figure 2B (um) are components of the fused
system shown in figure 1 (uh). The results for
um (figure 2A.) show a similar configuration to
what we have just seen for the fused result. That
is, Log10DSLRs yield relatively weak strength of
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Figure 2: Tippett plots showing Log10LRs from
SS (red line) and DS (blue line) comparison trials
based for individual FP features (uh , um and total
FPs) from 120 seconds of net speech, y-axis = 1 -
cumulative proportion of trials.

evidence with a large proportion of trials supporting
the contrary-to-fact hypothesis. The minimum LR
is slightly weaker (Log10DSLRs = -0.33) than in
the fused system, but this is to be expected. SS
comparisons fair better and produce almost identical
results to SS comparisons in the fused system in
terms of LR magnitude. For uh (figure 2B), LRs
are less biased towards the SS comparisons evident
from the more symmetric appearance of the Tippett
lines for SS and DSLRs. Here the magnitude of
LRs for SS comparisons is slightly weaker than
in figure 2A, but this is balanced by a reduction
in the magnitude of counter-factual DSLRS. The
magnitude of counter-factual DSLRs for total FPs
(figure 2C) by contrast is substantial relative to the
tippetts in 2A and B.

4. DISCUSSION & CONCLUSIONS

The results indicate AE FP occurrence is of
relatively limited forensic use given the poor
strength of evidence that is obtainable. This
is reflected in high Cllr values (close to 1) and
%EER observed. That said, these experiments
have only considered a narrow set of speech
disfluencies. Discriminant analysis in [13]
demonstrated that speaker classification rates are
improved substantially when several types of
disfluencies are combined (e.g. word repetitions,
silent and FPs, prolongations etc.). Similarly, in

a previous LR-based study of FP occurrence in
Japanese [7] substantial improvements are seen in
Cllr values as the number of FPs used in LR
estimation is increased. In fact, evidence of this
can been seen in the results presented in this paper
where logistic regression fusion of um and uh is
shown to yield better performance. Also worth
exploring is fusion of disfluency-based features with
acoustic and temporal information. It was shown
in [11] that formant and nasal duration information
from um yields low Cllr and %EER values. It
has also been shown that F0 associated with FPs
[12] varies between speakers. Incorporating this
information into the voice comparison would also
likely be beneficial. While acoustic features
require continuous methods for LR estimation,
LRs evaluating different kinds of evidence (from
different models) can be combined to give a measure
of the overall strength of evidence; either directly
through multiplication of LRs or, where evidence
is correlated, via a fusion procedure such as the
logistic-regression procedure used here. In this
way, FP occurrence and other disfluency features
may prove useful in providing complementary
information to acoustic-based systems; particularly
in instances where data is limited.

Another set of limitations relate to the statistical
model used to generate LRs. First, the Poisson-
Gamma model assumes FPs occurrence in
consecutive periods are independent. In reality,
FP occurrence is very likely dependant on factors
such as discourse structure. For example, where
FP are used to signal turn-taking, the occurrence
of FPs will be dependant the discourse structure
between interlocutors - this is likely to vary minute-
to-minute. Second, Poisson-Gamma is a univariate
model and therefore LRs were calculated separately
for um and uh. This ignores the potential for
interactions between individual speakers’ choice of
FP. For example, it may be that speakers exhibit a
preference for uh over um and do so in different
contexts. A multivariate discrete LR model, such
as a multinomial LR, may be more appropriate to
better capture these kinds of interactions.

This paper has evaluated the evidential value of
FP occurrence in AE using a discrete model for
LR estimation. The feature set was shown to
be a limited forensic value, but may complement
acoustic-based systems where data is limited.
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