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ABSTRACT

A fast-growing body of research is examining the
relationship between the acoustic properties of a
speaker’s voice and sexual orientation ascribed
to that speaker by listeners, however, these
studies by and large only examine variation
between speakers. In this paper I ask: what
considerations are necessary to develop a model
of how listeners integrate acoustic information
to make sexuality judgements? This is done
by conducting a perception experiment, and
modeling sexuality judgements from two listeners
of different sociodemographic backgrounds. I focus
on modeling architecture, comparing exemplar
models against logistic regression and random forest
models. I find that the cognitively-motivated
exemplar model best captures the behavior of
each listener, indicating that future work on queer
speech would benefit from engaging with cognitive
computational modeling. Ultimately, a model
of how listeners integrate acoustic information to
make perceived sexuality judgements will contribute
towards a more complete understanding of how
queer speech is constructed.
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1. BACKGROUND

A wide collection of experimental studies have
drawn connections between acoustic variation in
speakers’ voices and a speaker’s perceived or actual
sexual orientation. Early work finds that listeners
can be relatively “accurate” in distinguishing gay
vs. heterosexual cisgender male speakers from
audio alone [1], even with prompts as short as
a single word [2]. However, the picture of how
phonetic variation contributes to (perceived) sexual
orientation remains murky. Take the phoneme
/s/, which is one for which effects have been
found in many studies. The way /s/ variation is
operationalized is inconsistent, where any of center
of gravity [3, 4, 5, 6], peak frequency [7], skewness
[8, 4], duration [9, 10, 4], or a combination thereof

may be analyzed. Additionally, for any one measure,
one study may find a relationship between skewness
of /s/ and sexual orientation [8], while another finds
none [4]. Studies of other acoustic variables such as
pitch have been even less definitive [4, 5].

Furthermore, research on sexuality and the
voice often focuses on contrasting cisgender gay
and heterosexual men. When researchers have
examined other LGBTQ+ groups, such as bisexual
[4] or transmasculine [5, 6] individuals, individual
speakers have patterned with respect to /s/ in ways
that are different than in literature on gay men,
indicating that there are ways to sound queer beyond
the dominant stereotype of the “gay lisp” [3, 11].

Little such attention has yet been paid to
variation in listeners. Given that socially-grounded
expectations of listeners inform phonetic perception
[12, 13] and the interpretation of sociolinguistic
variables [14], it would be reasonable to expect
that listeners with different experiences perceive
sexuality in the voice differently. Indeed, one
study suggests that gay and straight speakers may
respond to experimental sexuality judgement tasks
differently [9], and another finds that listener
variability significantly accounts for variability in
elicited sexuality judgements [2].

So, a complete model of queer speech needs
to account for complex sociophonetic patterns, a
diversity of queer speech styles, and differential
expectations of listeners. This paper focuses on what
such a model—from the perspective of the listener—
would look like.

2. EXEMPLAR MODELING

I argue that missing from current literature on
sexuality and the voice is cognitively-motivated
model of how listeners go from phonetic input
to sexuality judgements. Thus, the central focus
of this paper is to evaluate the effectiveness of
different modeling strategies’ abilities to account
for the results of an experiment devised based on
prior work [2, 7]. In particular, this paper evaluates
exemplar models, which are foundational to a class
of modern theories of speech perception and have
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been applied to other domains in phonetics and
phonology [15, 16, 17]. Exemplar theory posits
that, when classifying, humans will compare a new
stimulus with experiences, or “exemplars,” already
stored in memory. The more similar the new
stimulus is to the exemplars of a category, the more
likely a person will judge that the new stimulus is of
that category. An exemplar model operationalizes
this theory in computational form. For this paper,
exemplar modeling is compared against logistic
regression and random forests as baselines.

Exemplar modeling makes a different set of
assumptions about its data than the other two models
considered. In logistic regression, a change in an
input variable linearly affects model output (e.g.
higher center of gravity directly predicts a more gay-
sounding voice). Random forest models are non-
linear, but still require imposing the structure of a
decision tree onto variables. Exemplar models, by
contrast, directly compare new data to data stored
in memory, which make them both non-linear and
motivated by a class of theories about how humans
do categorization.

Given the complex objective of this line of
investigation, I take a highly zoomed-in approach
to my data for this preliminary approach. I model
the behavior of two individual listener subjects
chosen for their vastly different sociodemographic
backgrounds, and focus on acoustic variation in
sibilant phonemes.

3. EXPERIMENTAL METHODOLOGY

Data was collected in an experiment [2, 7] consisting
of two tasks, each of which involved a separate
group of subjects: a speaker task, which generated
audio to be used in a listener task.

3.1. Speaker task

14 speakers were recruited for this study, all
graduate or undergraduate students 18–27 years old.
Speakers self-identified as “male, masculine, masc,
male-presenting, or male-coded” as a prerequisite
to participating in the study. After completing the
experimental task, speakers described their sexual
orientation and gender in open-responses boxes—
categorized gender and sexual orientation responses
are given in Table 1. Speakers were intentionally
recruited to represent a range of sexual orientations
and gender identities, to include a diversity of queer
voices; it is worth noting that only 2 speakers
identify as straight or heterosexual.

Speakers were administered a list of 25 sentences
selected from the MOCHA-TIMIT [18] corpus, and

Gender Count

Male 11
Non-binary or gender-nonconforming 3

Sexual orientation Count

Straight or heterosexual 2
Gay 5
Bisexual or bi/pansexual 4
Queer 2
Demisexual/asexual panromantic 1

Table 1: Categorized gender and sexual
orientation responses for speakers.

recorded reading each sentence aloud. Due to the
COVID-19 pandemic, subjects recorded themselves
in a quiet part of their home rather than in a lab.
Speakers read through the list of sentences three
times to ensure that there would be at least one
quality recording per sentence per speaker, yielding
350 recordings (14 speakers × 25 sentences).

3.2. Listener task

Listeners were recruited and administered their
task through Prolific [19]. After completing the
experimental task, subjects filled out a multiple-
choice survey on demographics and connections
with the LGBTQ+ community. This paper focuses
on modeling the behavior of two listeners—which
will be referred to throughout as listeners A
and B—who were chosen because they provided
maximally different answers to many survey
questions, especially those on exposure to LGBTQ+
communities. Answers to relevant questions on the
survey are provided in Table 2.

For the listener task, the 350 speaker recordings
were shuffled and divided into three lists of 116–
117 recordings each. Each listener subject who
participated heard one of these lists—listeners A
and B both heard the same list (116 recordings
total), and so provided judgements for the same
recordings presented in the same order. For each
recording a listener heard, they would provide an
ordinal 1–7 rating for how “queer/gay” the reading
sounded to them (1=“not at all queer/gay,” 7=“very
queer/gay”). Spearman’s rho indicates that listener
A and B’s ratings in the generated dataset (described
below) are significantly—although not strongly—
correlated (ρ = 0.323, p < 0.0001), so there is
variation in how they responded to the task, but their
ratings are not entirely independently motivated.
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Question Listener A Listener B

How old are you? 18–20 61–70
How do you describe yourself with respect to gender? Male Female
How do you describe yourself with respect to race and ethnicity? White or European White or European
How do you describe yourself with respect to sexual orientation? Bisexual or Pansexual Heterosexual or Straight
Do you self-identify as LGBTQ+? Yes No
How many of your close friends are LGBTQ+? Most, more than half Some, less than half
How frequently do you go to spaces that are explicitly LGBTQ+? About once a month Never or almost never
How accurately do you believe you are able to determine if someone
is queer or gay, upon meeting them?

Very accurately Not at all

Table 2: Selected survey responses for listeners A and B.

4. DATASET FORMATION

Existing research suggests that acoustic information
from multiple segments and types of segments is
simultaneously integrated to form judgements about
perceived sexual orientation [2, 6, 14, 20]—this
study focuses on the sibilants /s/, /z/, and /S/.
Sibilants were chosen because they are a relatively
small class of phonemes within which acoustic
variation is easily measured, and because there
already exists extensive literature connecting /s/ to
queer speech. Given that prior work has considered
several different acoustic measures of variation,
center of gravity, skewness, and duration were all
measured and given as features to the models.
Typically studies consider specifically /s/, however,
/S/ and /z/ were also considered for this study, which
allowed for the ability to evaluate models’ abilities
to handle multiple phonemes, and to implicitly test
whether future work should continue to focus on /s/.

TextGrids were generated for all recordings using
the Montreal Forced Aligner [21], and alignments
for all sibilants were then corrected manually.
Acoustic measurements were collected via the
Python library Parselmouth [22]. Any sibilant of
duration ≤ 50ms was excluded from the dataset, in
addition to any sibilant which occurred in a function
word (in this data, the words ‘is’ and ‘was’). This
was done to exclude any sibilant whose articulation
was highly reduced. This yielded a dataset of 176
sibilant tokens, and three features for every token
(center of gravity, skewness, and duration). All three
features in the dataset were normalized to a 0–1
range as a preprocessing step for the models.

Ratings given by listeners were simplified by
converting them to binary category labels. To
convert ratings to labels, all ratings above the
listener’s mean rating (listener A: 4.2, listener B:
3.5) were converted to YES, and all below to NO.
Every sibilant token was matched with the label the
listener assigned to the recording in which the token

occurred. This yielded two alternative labelings of
the same set of sibilant tokens.1

5. EVALUATING MODEL PERFORMANCE

All models were evaluated using the Scikit-learn
package in Python [23]. Implementations of logistic
regression and random forests were also taken
from the Scikit-learn library, and exemplar models
were implemented based on formulations used by
Johnson [17]. Hyper-parameter tuning was done by
five-fold cross validation,2 and model performance
was valued by average accuracy3 across ten-fold
cross validation. Models were trained, tuned, and
tested separately on the labelings given by listeners
A and B. Additionally, architectures were evaluated
over four subsets of the data: the entirety of the data,
and subsets composed of each individual phoneme
(/s/, /z/, and /S/). This yields 7 different scores for
each architecture: 2 speakers × 4 different subsets
of the data, minus the the /S/ subset for listener B,
because it only contained three YES labels, making
it unsuitable for evaluation.

6. RESULTS

All scores are given in Table 3. The logistic
architecture performs at or near chance for nearly
all of the data subsets. The forest model
fared worse, consistently performing well below
chance. The exemplar architecture almost entirely
outperformed the others, although confidence
intervals indicate that there is considerable variance
in its performance.

The results suggest that a purely linear treatment
of this data is insufficient to capture the full story of
listener behavior. With this in mind, consideration
was also given to improving the linear model by
preprocessing of the data. Model architecture was
kept exactly the same, however, each feature was
transformed by generating many univariate B-spline
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Listener Subset # tokens Chance Logistic (Raw) Logistic (Splined) Forest Exemplar

A All 176 0.52 0.52±0.01 0.55±0.13 0.44±0.10 0.58±0.10
/s/ 81 0.53 0.53±0.03 0.64±0.09 0.42±0.09 0.64±0.16
/z/ 73 0.53 0.54±0.09 0.53±0.03 0.41±0.07 0.61±0.20
/S/ 22 0.55 0.58±0.13 0.59±0.10 0.50±0.07 0.77±0.31

B All 176 0.55 0.55±0.01 0.58±0.13 0.56±0.12 0.69±0.08
/s/ 81 0.53 0.53±0.03 0.59±0.14 0.48±0.23 0.68±0.10
/z/ 73 0.55 0.62±0.07 0.63±0.13 0.64±0.13 0.74±0.05

Table 3: Model performance across all data subsets, listeners, and architectures, with 95% confidence intervals.
Also given are the number of tokens in each data subset, and expected performance for each subset if a model
were to perform at chance. The score of the best performing model for each subset is bolded. “Logistic (Raw)”
is the logistic architecture’s performance on the data without additional preprocessing, and “Logistic (Splined)” is
logistic architecture performance after projecting raw features onto spline bases.

bases for the feature, and projecting the raw features
onto these bases. 51 cubic B-spline bases—50
knots—were generated for each of the 3 features,
resulting in 53 basis features.4 This gives the logistic
architecture the ability to learn non-linear fits to
the data, and have many more degrees of freedom.
Average cross-validation scores are given in the
“Logistic (Splined)” column in Table 3. For most
data subsets an improvement in performance is seen
with the transformed data. However, performance
does not quite reach that of the exemplar model,
and improvements are not seen on every data subset.
This indicates that underlying patterns in the data are
broadly non-linear, but also that scaffolding a linear
architecture to perform as well as the exemplar
model would require considerably more machinery.

7. DISCUSSION

In this study, several modeling architectures were
compared for their ability to capture patterns in
sexuality judgements given by listeners, based on
acoustic information from sibilants. Given the
central goals of this paper, discussion will focus
on identifying relevant considerations for future
iterations of modeling work.

Most importantly, treating the data non-linearly
improved performance, and exemplar modeling
performed best. This indicates that future work
should continue to engage with cognitive science
research and cognitive modeling architectures.
Follow-up work should consider phonemes beyond
sibilants—especially simultaneous information
from multiple phonemes, and should consider
the ordinal ratings given by listeners (instead of
simplified binary labels) to create a more detailed
model of listener responses. Additionally, while this
paper did not investigate the parameters learned by
models, such analysis will be crucial in future work.

Results from modeling for this study do not
indicate that /s/ is the only sibilant phoneme with
an effect on sexuality judgements—in fact, the
best, most consistent performance across models
is seen on the {/z/, listener B} data subset. A
similar jump is also seen over the {/S/, listener A}
subset, however, the wide confidence interval make
it difficult to draw as strong of conclusions. This
suggests that effects previously observed on /s/
may extend at least as far as these two other
phonemes, and encourages future work to consider
how to parametrize information from many different
phonemes and types of phonemes.

Lastly, it was observed that models were, across
data subsets, able to fit the labelings given by listener
B more accurately than listener A. In fact, only
for listener B does the entire confidence interval
of all exemplar model scores lie above chance
performance. This suggests that, in fact, the
two listeners did bring different expectations about
queer speech to the given task. Table 2 indicates
that listener B did not self-identify as LGBTQ+,
where listener A did, and listener B also indicated
less connection with the LGBTQ+ community than
listener A. One possible explanation for why B’s
ratings were able to be better-described by the model
could come from this (lack of) experience—if the
ability of a model to fit data is used as a proxy for
how “systematic” the data is, then listener A may be
basing his judgements on a larger and more diverse
set of experiences with queer and trans individuals,
where listener B is referencing a more limited set
of experiences that may be better-characterized by
dominant stereotypes such as the “gay lisp” [3, 11].
This indicates the explanatory ability of modeling
to explore differences between listeners, and invites
expanding models to compare an arbitrary number
of listeners.
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and it generates labelings that are balanced between YES
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