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ABSTRACT 
 
In East Central German, there’s an opposition in the 
reflexes of Middle High German ei, ou, öu: In 
Standard German, these diphthongs are shifted to [aɪ̯, 
aʊ̯, ɔɪ̯] whereas in the dialects they’ve been 
monophthongised to [eː, oː, eː] respectively. 
However, dialectal monophthongs are increasingly 
replaced by standard diphthongs. This paper uses 
publicly available data from non-professional 
speakers recorded over the past 20 years to examine 
(supposed) lifespan variation in phthong use. 
Combatting this plethora of data by auditory 
categorisation alone is not feasible. Thus, a procedure 
to automate the distinction between mono- and 
diphthongs for larger datasets is proposed: Relevant 
segments are force-aligned and formant tracks are 
calculated automatically. Their DCT coefficients and 
temporal parameters are then used to train multiple 
random forests. With a classification accuracy of over 
95% this scalable model promises sufficiently 
accurate results for the analysis of lifespan change in 
phthong realisations. 
 
Keywords: DCT, random forest, diphthong, East 
Central German, lifespan change. 

1. INTRODUCTION 

In our research project, we are interested in 
examining linguistic (in-)stability across the lifespan 
in the use of multiple East Central German (ECG) 
variables. In this paper, the focus will only be on the 
realisation of Middle High German (MHG) ei and ou. 
As the available dataset currently consists of more 
than 420 hours of footage, this paper proposes a 
procedure for automating the distinction between 
monophthongs and diphthongs using random forest 
models. 

1.1. Automatic distinction of mono- and diphthongs 

In sociophonetics, the standard practice to analyse 
vowels acoustically is the calculation of the first and 
second formants. These static measurements of F1 
and F2 at the temporal midpoints of each vowel, 
commonly used for distinguishing monophthongs, 
lack the ability to account for the diphthongs’ 

dynamic nature, which is manifest as a temporal 
systematic change in formant values. In recent years, 
several different methods have been proposed to 
quantify the formant paths of diphthongs. Instead of 
measuring just the vowel centre, the measurement is 
extended to multiple time points. Here, time points 
can either be chosen relative to the vowel length, e.g. 
at discrete points spaced equally around the midpoint 
of each vowel [1, 2, 3], or in absolute steps, e.g. every 
2.5 milliseconds [4]. Various methods have been 
proposed to utilise these discrete values to represent 
the dynamic formant trajectories: polynomial 
functions, additive models, target-locus scaling, 
vector-based measurements, and discrete cosine 
transformations [2]. Polynomial functions [5] and 
additive models [4, 6, 7] fit “curves to the sampled 
formant frequencies over time” [3]. Although “they 
have the advantage of not forcing a parameterisation 
on trajectory shapes” [3], they are difficult to 
“generalize across different datasets” [3]. Vector-
based approaches [2, 8] measure the Euclidian 
distance between two data points and/or calculate the 
angle of these vectors. Despite relying on little 
spectral information, they have proven to be quite 
effective [3]. Nonetheless, classification results can 
be even further improved by representing trajectory 
shapes with discrete cosine transformations [2].  
 

 
Figure 1: Zeroth, first and second DCT basis 
functions. Taken from [8], edited by the first author. 

 
Discrete cosine transformations (DCT) [1, 3, 10, 11, 
12] work by expressing an input signal sequence as a 
sum of weighted cosine functions with different 
frequencies. “The curve parameterization is based on 
a trajectory’s mean plus ½ cosine multiples, each with 
amplitudes representing deviations from this mean” 
[3]. The amplitudes of these cosine functions are 
referred to as DCT coefficients. Figure 1 shows that 
the zeroth DCT coefficient DCT-0 correlates with the 
mean of the input signal, DCT-1 (half of a cosine), 
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with the slope’s magnitude and direction and DCT-2 
(a full cosine) with the overall curvature [3]. Several 
studies use these first three DCT coefficients to 
successfully describe vowel-inherent spectral change 
[3, 10, 11, 12], while DCT-0 and DCT-1 are the most 
important [1, 3, 9]. 

1.2. Lifespan variation and change 

In the past two decades, an ever-growing number of 
studies have been published that more closely 
examine lifespan stability, variation, and change in 
several languages (see e.g. the edited volumes [13, 
14]). For German, there are only a few studies to date 
[4, 15, 16, 17, 18]. All these studies show a great 
amount of inter-individual variation: While the 
greater part of individuals show linguistic stability, a 
few others show considerable change over time. E.g. 
in [4], the majority of speakers change their language 
over the course of their lifespan, following the 
community-wide trend toward variants closer to the 
standard. Only two individuals reveal a retrograde 
change which is explained by retirement and a 
pronounced sense of dialect identity. The result that 
most speakers change their language over their 
lifespan contradicts those findings, that stability is the 
predominant individual pattern [19]. However, in a 
situation with a strong dialect levelling as in Swabia 
[4], it is likely that most community members 
conform to the trend. 

The majority of these studies only work with two 
different recording dates [4, 15, 16, 17, 18], and the 
differences they find at these two stages are 
interpreted as lifespan change. Studies that look at 
more time stamps [21, 22, 23] reveal more complex 
structures, as the realisations of different variants 
often seem to oscillate, which can be interpreted as a 
somewhat stable variation. If only two points in time 
are considered within such oscillating patterns, these 
differences are overinterpreted or misinterpreted as 
change. Against this methodological background, a 
denser temporal grid for the investigation of lifespan 
change (or variation) would be preferable [21]. 

1.3. The linguistic situation in East Central German 

The data for this paper was recorded in the ECG area, 
where on the one hand the traditional dialects have 
already been largely lost and their function is now 
filled by a regional vernacular – in contrast to many 
other German areas. On the other hand, the regional 
realisation of the standard contains many of these 
vernacular features so that standard and vernacular 
tend to be quite close to each other [24, 25]. One of 
the features considered typical of ECG dialects is the 
realisation of the MHG diphthongs ei, ou, and öu as 
monophthongs [eː], [oː] and [eː] respectively, thus 

preserving a phonological contrast that has been lost 
in New High German (NHG). At present, an 
abandoning of the monophthongal realisations in the 
regiolect [24] and thus a trend towards the standard 
diphthongs can be observed.  
 

MHG î ei û ou iu öu 
ECG aɪ̯ eː aʊ̯ oː ɔɪ̯ eː 
NHG aɪ̯ aɪ̯ aʊ̯ aʊ̯ ɔɪ̯ ɔɪ̯ 

 
Table 1: Merger of six MHG mono- and diphthongs 
to three NHG diphthongs. In ECG dialects, the 
phonological contrast is preserved. 

2. DATA 

The data basis for this study is the German zoo 
docusoap “Elefant, Tiger & Co.” which follows the 
everyday life of the zoo animals and the work of 
Leipzig Zoo employees and has been broadcast 
weekly since 2003. The employees are accompanied 
during their work, they speak directly to the TV 
audience, to the animals, and to each other, while 
acting entirely without a script. Most speakers’ 
educational, occupational, and socio-professional 
statuses remain consistent throughout the series. As 
of the submission of this paper, over 1000 episodes 
have been broadcast, each approximately 25 minutes 
long. For the current study, 133 of these episodes are 
divided into four evenly spaced periods: 2003/2004, 
2008/2009, 2013/2014, and 2018/2019. In total, more 
than 20 regular interviewees have made appearances 
in at least three of these periods. Three of the most 
prominent speakers are selected for this paper.  

3. METHOD 

Each episode is transcribed orthographically in Praat 
[27]. These transcripts are then automatically force-
aligned using WebMAUS [28] and other BAS web 
services [29, 30]. For the three selected speakers, 
258,515 segments were obtained, 8,786 of these 
being either /aɪ̯/, /aʊ̯/, or /ɔɪ̯/. F1 and F2 values are 
calculated at 31 equally spaced time points (20%, 
22% … 80% of total vowel duration) in Praat and z-
normalised in R (v4.2.2) [31] using the package 
vowels [32]. Additionally, the duration of every 
segment is extracted. The NHG diphthong in each 
lexeme is then matched to the corresponding MHG 
vowel. 4,683 tokens (= 53.3%) correspond to MHG î, 
û, iu, which are realised as the same diphthongs in 
standard and dialect (see Table 1). Those that go back 
to MHG ei, ou, öu add up to 3,662 tokens (= 41.68%). 
262 tokens (= 2.98%) correspond to neither of those 
historical categories. MHG öu is by far the rarest with 
only 83 tokens overall. 
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In the present, data only diphthongal realisations [ɔɪ̯] 
can be found. Hence all tokens for MHG öu will be 
excluded from further analysis. 

Due to the large size of the entire corpus, neither 
the force alignment nor the formant paths can be 
corrected manually. To tidy the data automatically 
and mitigate the influence of potential noise in the 
process, tokens with a median F1 less than 200 Hz or 
larger than 1000 Hz, with a median F2 less than 
800 Hz or larger than 2500 Hz, or those longer than 
400 ms are excluded [4]. In Table 2 all remaining 
tokens for the actual analysis are listed, separated by 
speaker and period. 

 

 MHG 
vowel 

Period 
03/04 08/09 13/14 18/19 

Speaker 1 ei 323 380 253 316 
 ou 242 256 162 195 
Speaker 2 ei 58 29 24 227 
 ou 49 12 13 94 
Speaker 3 ei 307 70 55 173 
 ou 138 28 39 84 

 
Table 2: MHG vowel tokens per speaker per period. 

 
For each token, the first three DCT coefficients for F1 
and F2 are calculated in R using the package emuR 
[33]. Together with the log10-transformed duration 
values these DCT coefficients are used as predictors 
for a random forest model, calculated with the R-
package randomForest [34]. Random forest models 
have proven to be more accurate than regression 
models in separating multivariate linguistic data [35], 
despite being somewhat hard-to-interpret black 
boxes. They work by fitting multiple decision trees to 
data, but for each tree not only randomising the 
specific samples using bootstrap aggregation 
(bagging) but also changing the subsets of the 
predictor variables [35]. The final prediction is the 
average of all individual trees’ predictions.  

The specific random forest used to categorise 
automatically all tokens into either mono- or 
diphthongs is trained on a subset of tokens (n = 324), 
that previously have been auditorily categorised by 
the two authors and two student assistants. Tokens 
assigned being neither mono- nor diphthongs, mostly 
due to wrong alignment or phonetic reduction, have 
been excluded from this subset. 

4. RESULTS 

To achieve the most accurate classification, the 
random forests were calculated in three different 
ways: A) Should the model distinguish between 
MHG vowels? After all, different phonemes 
correspond to different formant tracks. B) Should the 

formant data be normalised? Z-normalisation is 
common when comparing formant data of different 
speakers. However, previous test runs with smaller 
samples achieved better results with non-normalised 
data. C) Should the model distinguish between 
different speakers? Here, only three speakers are 
analysed, but ideally the model should work for all 
the other additional speakers to be analysed later. 
 

± MHG ± Norm. ± Speaker Accuracy 
+ + + .909 
+ + − .896 
+ − + .976 
+ − − .969 
− + + .877 
− + − .883 
− − + .944 
− − − .938 

 
Table 3: Highest classification accuracy scores of 
different random forest models, each calculated 
with unique parameters explained above. 

 
Each of the eight configurations in Table 3 was tested 
on 40 different random forest model settings, each 
with different numbers of decision trees (ntree = 50, 
100 … 2000) and repeated 100 times. The data was 
split 50/50 into training and test datasets. As there 
were eight or nine independent variables, depending 
on whether speaker information was included, the 
number of variables tried at each split (mtry) was 
limited to three, as recommended [35]. Where MHG 
vowels were differentiated, the best classification 
accuracy scores for MHG ei and MHG ou 
respectively were averaged. Table 3 shows that the 
highest classification scores were achieved with 
random forest models that were separated by MHG 
vowel, used non-normalised data, and differentiated 
between different speakers. The best-performing 
models achieved an accuracy score of .964 for MHG 
ei and .988 for MHG ou, resulting in an average 
accuracy of .976. As those models were trained at a 
very specific subset of the original data, they were 
then used to classify the phthongs with different data 
subsets. After 100 iterations each, the model for 
MHG ei achieved accuracies between .964 and 1 with 
a median of .976, and the model for MHG ou between 
.988 and 1 with a median of .988.  

According to the variable importance scores (see 
Table 4) the first two DCT coefficients for F1 and F2 
generally were the most important variables in both 
random forest models, contributing best to the 
homogeneity at the nodes and leaves (= Gini) and 
leading to the biggest drop in accuracy if they were 
excluded (= Acc.). 
 

22. Sociophonetic Variation ID: 382

3614



Variable Acc. ei Gini ei Acc. ou Gini ou 
k0_f1 8.351 6.724 46.042 8.205 
k0_f2 7.859 6.896 4.649 2.424 
k1_f1 5.347 6.207 5.283 3.359 
k1_f2 5.278 5.698 1.427 2.116 
k2_f1 3.171 3.684 2.461 2.326 
k2_f2 -0.197 2.710 -6.218 1.646 
length 7.013 6.537 -0.091 1.993 
speaker 1.184 0.828 4.873 0.718 

 
Table 4: Variable importance scores (mean 
decrease in accuracy and mean decrease of Gini 
coefficient) of the best performing random forest 
models for MHG ei and ou respectively. 

 
Length is the third most important variable for 
classifying the realisations of MHG ei, but one of the 
least important ones for MHG ou. Information about 
the speaker also turned out not to be too essential for 
classification, an observation supported by the fact 
that those random forests excluding speaker 
information altogether achieved only minimally 
worse accuracy scores than those that did not (see 
Table 3). In a final step, the two best-performing 
random forests – one for MHG ei and one for MHG 
ou – were used to analyse the usage of dialectal 
monophthongs across the three individual speakers’ 
lifespans. 
 

 
 

Figure 2: Percentage of monophthongs per speaker 
per period. Phonemes were classified automatically 
using the best-performing random forest models for 
MHG ei and ou respectively. 

Overall, all speakers seem to show stability in their 
use of phthongs but tend to use a higher percentage of 
monophthongal realisations of MHG ou than of MHG 
ei (see Figure 2). Where variation does occur, it is of 
an oscillatory nature, increasing and decreasing 
alternately. The envelope of variation across the 
lifespan is quite low, remaining comfortably in single 
digits, except for MHG ou of Speaker 3. These small 
variations are reflected in the results of subsequent 
Pearson’s chi-square tests at a = .05, which show no 
statistically significant differences for each speaker 
and each phoneme (p > .25 in all cases). In contrast to 
this low level of intra-speaker variation, the overall 
inter-speaker differences are significantly distinct for 
MHG ei, χ2 (2, N = 2,215) = 94.36, p < .001 and 
MHG ou, χ2 (2, N = 1,312) = 39.21, p < .001. 

The slight oscillations of the lifespan trajectories, 
not exhibiting statistically significant differences, 
could very well be influenced by comparatively low 
token numbers. Other factors possibly contributing to 
the varying use of mono- or diphthongs include 
situation-specific performance effects, as the 
speakers are recorded in different communicative 
situations, as well as the frequency of the respective 
words since in ECG the monophthongisation tends to 
be highly lexicalised. 

5. DISCUSSION 

Methodologically, random forest models with the 
three first DCT coefficients of F1 and F2 and duration 
of force-aligned segmentations can reach high 
accuracies in distinguishing monophthongs and 
diphthongs – at least in the ECG area. Hence this 
procedure has proven to be valuable for analysing the 
use of these phthongs in larger datasets. 

Using this method, the analysis of lifespan 
variation of three adult ECG speakers reveals relative 
stability, sometimes slightly oscillating around their 
individual means. However, the speakers are different 
in their individual realisation of mono- and di-
phthongs, resulting in a considerable inter-speaker 
variation. Their quasi-stable use of mono-
phthongisation mirrors their stable educational, 
occupational, and socio-professional circumstances. 

The general change within the community as 
reported in [24] is not reflected in an individual 
change, supporting findings of general stability as one 
of several possible patterns of individual linguistic 
variation across the lifespan [19].  Nonetheless, the 
corpus allows for further individuals to be analysed 
over their lifetime and for apparent time analyses at 
different time points with a dataset of more than 100 
speakers. Thus, a deeper insight into the correlation 
between language change and individual variation in 
a longitudinal study can be expected.  
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