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ABSTRACT 

 
Despite well-known rhythmicities in spoken 
language, neither strict nor absolute isochrony is 
present; linguistic structures are not located at equal 
intervals. An alternative periodicity-based approach 
to linguistic rhythm instead considers quasicyclic or 
oscillatory properties of the speech signal—in articu-
lation or acoustics—over extended stretches of 
speech. Additionally, while periodicity in speech 
acoustics has been implicated in neural entrainment, 
it is unknown if periodicity in the articulatory domain 
is also present in a way that could promote intelligi-
bility. In the present study, the stability of an articu-
latory spatiotemporal modulation function calculated 
from kinematic point tracking data and a correlated 
acoustic modulation function calculated from 
MFCCs is compared to the stability of amplitude 
envelope modulation, which is shown to reflect vowel 
onsets and lexical stresses. Results demonstrate that 
both types of modulation functions are comparable in 
stability to the amplitude envelope, indicating their 
potential viability for speech perception and/or 
production processing. 
 
Keywords: Rhythm, Modulation, Amplitude 
Envelope, Articulation, Speech Timing 

1. INTRODUCTION 

While language exhibits rhythmic characteristics, 
strict or absolute isochrony is not present. An analytic 
approach that leverages the stability of quasi-cyclic or 
oscillatory properties of the speech signal—either in 
production or acoustics—over longer stretches of 
speech can provide a means for defining rhythm as 
durational regularity. Such a global (i.e., long 
timescale) approach to modulation can be calculated 
irrespective of language, speaking task, or speaker 
and may be influenced by or reflect linguistic 
structures [7], [9], [17], [14]. We call such an 
approach a “periodicity approach.”  

Models of rhythm incorporating a periodicity ap-
proach vary regarding which specific oscillatory 
properties they index. In the acoustic domain, these 
oscillatory properties tend to match frequencies at 
which neural entrainment occurs [12], [1], [8], [14], 
[9] and thus may aid in speech perception [5], [16], 
[3]. The most common periodicity approach uses the 

fluctuating speech acoustic amplitude envelope (e.g., 
[17], [14], [11], [4]). In Tilsen and Arvaniti’s [17] 
acoustic amplitude mode decomposition method, a 
series of filters is applied to the speech signal to ex-
tract the quasi-cyclic fluctuations of amplitude during 
the speech stream. The amplitude envelope can then 
be decomposed using a sifting process into a series of 
intrinsic mode functions, which reflect amplitude os-
cillations at increasingly longer timescales [17]. The 
first (i.e., shortest timescale) of these functions 
roughly corresponds to the syllable-level timescale, 
and the second to the stress-foot-level time scale; 
however, Tilsen and Arvaniti [17, p. 631] establish 
this correspondence only qualitatively, stating that 
they “observ[ed] it to hold true in the majority of 
cases…examined by inspection.” 

Oganian and Chang [14], in contrast, calculate the 
derivative of the positive amplitude envelope, so that 
instead of fluctuations in amplitude, the derived 
global signal captures fluctuation in instantaneous 
amplitude change. The instants of peak change in 
amplitude, they argue, are likely involved in speech 
perception, because they found that these peak 
“events” produce time-locked response in the human 
superior temporal gyrus [14]. Periodicity approaches’ 
relevance to neural events may aid in their inter-
pretability in terms of the cognitive activities involv-
ed in speech production and perception (e.g., [7]). 

While speech amplitude envelope methods of 
tracking global periodicity capture oscillations of the 
acoustic signal, another method for indexing speech 
rhythm is feasible—the spatiotemporal modulation 
function approach [6]. This approach can capture 
rhythmicity in either an articulatory or an acoustic 
signal, quantifying the oscillatory properties of the 
rate of global change in the vocal tract or in the 
acoustic spectrum over time. We speculate 
additionally that neural responses can entrain to the 
modulation function (in addition to or alternatively to 
the amplitude envelope), which would potentially 
implicate the modulation signal in production, per-
ception, and learning processes. That said, for 
entrainment to be possible, the modulation pulse fre-
quency must fall in an appropriate and sufficiently 
stable frequency range across and within speakers. 
Specifically, for viability in linguistic neurocognitive 
processes, the appropriate frequency range would be 
expected to be in or near the theta band range, 4-8Hz 
[15]. In sum, temporal stability in articulatory and 
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concomitant acoustic modulation pulse rate is 
predicted across speakers such that the average 
frequency of modulation is expected to be resistant to 
variation, as other periodicity approaches have been 
found to be. The present study uses articulatory and 
acoustic modulation data to assess this prediction. 

2. METHODS 

Readings of the “Grandfather Passage” [2] by nine 
speakers were sourced from the X-Ray Microbeam 
(XRMB) Corpus [19]. Two analyses were conducted. 
The first compares the frequencies and temporal 
stability of the articulatory and acoustic modulation 
pulses to those of peaks in the differentiated ampli-
tude envelope. The second analysis explores linguis-
tic drivers of this periodicity by comparing the fre-
quencies of acoustic vowel and stressed vowel onsets 
to the first and second intrinsic mode functions of the 
amplitude envelope, respectively. 

2.1. Derived variables 

The articulatory modulation function was calculated 
to index instantaneous change of the global 
articulatory posture over time as captured by pellet 
positioning on the articulators, and the acoustic 
modulation function was calculated to index 
instantaneous spectral change over time as captured 
by MFCCs. These calculations were conducted 
following [6], which also used XRMB data. Speci-
fically, the articulatory modulation function was 
calculated as the squared Euclidean distance between 
the 14-dimensional vector of XRMB marker 
positions at successive time samples. To calculate the 
acoustic modulation function, the difference across 
successive frames of the first 13 MFCC parameters 
were squared and summed. Each function was then 
smoothed using a low-pass 12 Hz-cutoff, ninth-order 
Butterworth filter. “Pulses” are defined as peaks in a 
modulation function and were calculated by 
identifying local maxima of the function. 

The acoustic amplitude envelope was calculated 
following [17] for each speech analysis interval (see 
below). Specifically, the acoustic signal was 
bandpass filtered using a fourth order Butterworth 
filter with cutoffs [400, 4000] Hz to determine vocalic 
energy, then lowpass filtered with a fourth order 10Hz 
Butterworth filter. The function was then normalized 
by subtracting the mean and dividing by the 
maximum of the function and windowed using a 
Tukey window. To make the signal comparable to the 
modulation functions, the amplitude envelope was 
differentiated and then filtered again with a fifth order 
12Hz lowpass Butterworth filter. To evaluate the 
correlation between the intrinsic mode functions and 
driving linguistic structures posited by [17], the non-

differentiated function was sifted using Matlab’s emd 
function into two intrinsic mode functions (S. Tilsen, 
personal communication, February 6, 2022), which 
were also filtered with a fifth order 12 Hz lowpass 
filter. Peaks in the differentiated amplitude envelope, 
as well as the first two intrinsic functions of the non-
differentiated amplitude envelope, were designated as 
local maxima in the function.  

Means and variability in frequency were 
calculated for both articulatory and acoustic modula-
tion pulses and peaks in the differentiated amplitude 
envelope for each analysis interval (defined below). 
The reciprocal of the periods between timepoints 
provided frequencies for each timeseries. The mean 
frequencies of the first and second intrinsic mode 
functions of the amplitude envelope and of acoustic 
vowel onsets and stressed vowel onsets (defined 
below) were likewise calculated. 

2.2. Analysis intervals & defining linguistic timepoints 

Specific windows of speech analysis were determined 
based on phrasal groupings by identifying potential 
phrase boundaries in the passage. However, since not 
all speakers produced a pause at every one of these 
boundaries, only boundaries occurring with a pause 
greater than 100ms were used for segmenting the 
passage into analysis intervals. (Pauses due to 
disfluencies were not used to define analysis 
intervals.)  

To determine the timepoints of linguistic 
structures, each of the passage’s syllables in the 
acoustic signal was annotated as having either 
primary stress (“stressed”) or non-primary stress 
(“unstressed”), consulting the CMU Pronouncing 
Dictionary [18] in cases of ambiguity. The acoustic 
onset of the vowel in each syllable was selected as the 
syllable’s timepoint of occurrence. 

While phrase boundaries were used to demarcate 
analysis intervals, some participants produced 
(ungrammatical) filled or silent pauses interior to 
phrases as defined here. Pulse and peak intervals 
during pauses longer than 100ms (as marked by the 
Penn Force Aligner [20]) were excluded in data 
cleaning, and vowel onset and stressed vowel onset 
interval measures spanning such pauses were also 
excluded. 

2.3. Statistical analysis 

To compare the vowel onset timeseries and the first 
intrinsic mode function of the amplitude envelope as 
well as the stressed vowel onset timeseries and the 
second intrinsic mode function, two linear mixed 
effects models were fitted using the R package lme4, 
predicting frequency by timeseries (vowel onset and 
IMF1 for the first model; stressed vowel onset and 
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IMF2 for the second) with random intercepts grouped 
by speaker. Timeseries in each model was contrast 
coded, and frequency was centered and rescaled. 

To calculate within speaker variation of the two 
modulation pulses and peaks in the differentiated am-
plitude envelope, the coefficient of variation (stand-
ard deviation normalized by mean) was calculated for 
the frequencies occurring in each speaker’s analysis 
intervals; the mean of these coefficients of variation 
provided the average variability for each individual 
speaker. Differences between coefficients of varia-
tion of the three timeseries were tested using two 
modified signed-likelihood ratio tests (MSLRT) for 
equality of coefficients of variation [10] (R package 
cvequality, Version 0.1.3; [13]). Two tests for each 
speaker are relevant to our predictions; these com-
pared for each speaker (i) the coefficients of variation 
for articulatory modulation pulses and the differenti-
ated amplitude envelope and (ii) the coefficients of 
variation for acoustic modulation pulses and the dif-
ferentiated amplitude envelope. Bonferroni correc-
tions were applied to account for the 18 pairwise com-
parisons; p values were therefore considered signifi-
cant at p≤0.003. 

To calculate between speaker variation for the 
same timeseries, for all speakers the coefficient of 
variation was calculated across the frequency means 
of the two modulation functions and the amplitude 
envelope timeseries. Mixed effects models for the 
frequencies of the three timeseries were fitted 
separately on all speakers’ pooled data using the R 
package lme4, predicted by random intercepts 
grouped by speaker. Residuals from each model were 
squared and divided by the mean frequency of the 
timeseries with all speakers pooled, and two linear 
models—the first comparing articulatory modulation 
pulses and the differentiated amplitude envelope, and 
the second comparing acoustic modulation pulses and 
the differentiated amplitude envelope—were fitted to 
predict residuals by timeseries. 

3. RESULTS 

The mean frequency of articulatory modulation 
pulses was 8.18Hz (SD = 2.31), and the mean 
frequency of acoustic modulation pulses was 9.12 
(SD = 3.03). These signals were highly periodic; 
means for each speaker ranged from 7.76Hz to 
8.49Hz (articulatory) and 8.25Hz to 9.66Hz 
(acoustic). The frequency range of modulation pulses 
was generally higher than the frequency range of the 
differentiated amplitude envelope; the envelope mean 
was 7.19Hz (SD = 2.47), with a range of speaker 
means from 6.89Hz to 7.65Hz. NB: The auditory 
cortex is most sensitive to modulations at frequencies 

between 2 and 8Hz [7]; the mean frequencies of each 
timeseries falls within or very close to this range. 
 

 
Figure 1: Frequencies of three periodic signals (each 
significantly different from the others p < 0.001). One 

point (48.5Hz) removed from middle boxplot for space.  

3.1. Linguistic drivers of amplitude oscillation 

Before turning to the variability of these signals, 
we assess the previously alluded to correlation [17] 
between the frequencies of the first two intrinsic 
mode functions of the amplitude envelope and 
linguistic structures. The first and second intrinsic 
mode function of the (undifferentiated) amplitude 
envelope were compared respectively to the frequen-
cies of the vowel onsets of each syllable and the 
vowel onsets of each stressed syllable. These frequen-
cies were expected to be non-distinct for the first 
intrinsic mode function (IMF1) and vowel onsets and 
for the second intrinsic mode function (IMF2) and 
stressed vowel onsets. Our results indicate no differ-
ence between the frequencies of IMF1 and vowel 
onsets. The mean frequency of IMF1 with all speak-
ers pooled was 6.52Hz (SD = 3.15); the mean fre-
quency of vowel onsets was 6.32Hz (SD = 4.49). A 
linear mixed effects model predicting frequency by 
timeseries with random intercepts grouped by speaker 
showed that there was no significant effect of 
timeseries (b = -0.027, SE(b) = 0.025, t(1683) 
= -1.07, p = 0.28) Similarly, no difference was found 
between the frequencies of IMF2 and stressed vowel 
onsets. With speakers pooled, the mean frequency of 
IMF2 was 2.64 (SD = 0.89), and the mean frequency 
of stressed vowel onsets was 2.78 (SD = 1.50). A lin-
ear mixed effects model predicting frequency by 
timeseries with random intercepts grouped by speaker 
showed that there was no significant effect of 
timeseries (b = 0.061, SE(b) = 0.038, t(695.4) = 1.59, 
p = 0.11). Therefore, Tilsen and Arvaniti’s [17] quali-
tative observation that the first two intrinsic mode 
functions of the amplitude envelope correspond to 
linguistic structures is generally supported. 

3.2. Variability of periodic signals 

We turn now to variability of the frequencies of 
modulation pulses and how it compares to that of the 
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amplitude peaks, considering this both within and 
across speakers. The mean coefficient of variation 
within speakers was 28.1% for articulatory modula-
tion pulses, 31.9% for acoustic modulation pulses, 
and 34.4% for differentiated amplitude envelope 
peaks. Figure 2 shows variation within each speaker. 
 

 
Figure 2: Coefficient of variation of the frequencies of 

three periodic signals. Error bars represent standard error 
of coefficient of variation. 

 
Three speakers (speakers 39, 46, & 53) showed 

significantly lower variation in articulatory modula-
tion pulse frequencies than differentiated amplitude 
envelope peak frequencies (p = 0.001, 0.0002, and 
0.002, respectively); all others were not significantly 
different. One speaker (speaker 43) showed signifi-
cantly lower variation in amplitude envelope peak 
frequencies than in acoustic modulation pulse fre-
quencies, and another (speaker 46) showed signifi-
cantly greater variation (p < 0.001 for these speakers); 
the rest were not significantly different. In sum, most 
speakers did not have any significant difference in 
variation between either type of modulation pulse and 
peaks in the differentiated amplitude envelope. 

To determine between-speaker variability, the 
mean frequency of each timeseries was calculated for 
each speaker. The coefficient of variation was then 
calculated across these nine frequencies for each 
timeseries. These values were 3.41% for articulatory 
modulation pulses, 4.97% for acoustic modulation 
pulses, and 3.30% for differentiated amplitude enve-
lope peaks. Fig. 3 shows variation with all speakers 
pooled; note that this figure shows higher coefficients 
of variation than the numbers stated above because it 
includes within-speaker variation, as well. 

Models for between-speaker variability yielded 
significantly lower variability between speakers for 
articulatory modulation pulse frequencies than for 
differentiated amplitude envelope pulse frequencies 
(b = 0.20, SE(b) = 0.06, t(2476) = 3.56, p < 0.001), 
and no significant difference in variability between 
speakers for acoustic modulation pulse frequencies 
than for differentiated amplitude envelope pulse 
frequencies (b = -0.14, SE(b) = 0.15, t(2631) = -0.95, 
p = 0.34). The between- and within-speaker varia-
bility results indicate the stability of both articulatory 

and acoustic modulation pulses.  
 

 
Figure 3: Coefficient of variation of the frequencies of 

three periodic signals with all speakers pooled. Error bars 
represent standard error of coefficient of variation. 

4. DISCUSSION AND CONCLUSION 

The goals of this study were to assess the articulatory 
and acoustic global modulation functions as an index 
of rhythmicity in the context of implications for 
spoken language production and perception processes 
by comparing them to the speech acoustic amplitude 
envelope periodicity. Further evaluated were claims 
that derived functions from the amplitude envelope 
capture specific levels of linguistic structure. 

The modulation pulses were highly periodic in 
both articulation and acoustics, and their frequencies, 
like those of the amplitude envelope, fell within or 
slightly above the range at which the auditory cortex 
is reported to best entrain with speech [15]. Further, 
the first two intrinsic mode functions of the amplitude 
envelope matched the frequency of vowel onsets and 
stressed vowel onsets, respectively. The frequency of 
articulatory and acoustic modulation pulses were 
found to be comparably robust against within-speaker 
and between-speaker variation when compared with 
peaks in the differentiated amplitude envelope. The 
stability of these signals contributes to predictability 
and could enhance intelligibility and perceptual 
processing, in addition to foundational internal 
processes of speech planning and motor control that 
are thought to require ‘binding’ of the articulatory and 
acoustic dynamics [6]. 

Given that all three periodic signals are extracted 
from the same speech stream, whether in articulation 
or acoustics, each may be a window to a common 
underlying rhythmic phenomenon in speech. Further, 
given that the amplitude envelope was shown to 
reflect linguistic structural information of different 
timescales, the signals may be viable links between 
abstract linguistic elements and concrete oscillatory 
acoustic and articulatory patterns in the speech signal. 
Neural entrainment may then facilitate speech 
perception by efficiently estimating linguistic 
structures during listening processes. 
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