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ABSTRACT

Following the release of the SLEEP corpus during
the Interspeech 2019 paralinguistic continuous
sleepiness estimation challenge, a paper presented
at Interspeech 2020 by Huckvale et al. examined
the reasons for the poor performance of the models
proposed for this task. They conducted a perceptual
experiment on a subset of this corpus that seems
to indicate that human hearing is, however, able to
estimate sleepiness in this corpus.

In this study, we present the results of the
Endymion replication study, in which the same
samples were rated by thirty French-speaking naive
listeners. We then discuss the causes of the
differences between the two studies and examine
the effect of listener and sample characteristics on
annotation performances.
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1. INTRODUCTION

Sleepiness is a public health problem that increases
the risk of disability and mortality [1]. The
significant imbalance between the amount of sleep
specialists and the prevalence of sleepiness (up
to 40% of the general population [2]) and the
need for physicians to better follow up their
patients between consultations has led them to adopt
Ecological Momentary Assessment with which they
have access to patients’ symptoms very regularly
in their usual living conditions, paving the way
to personalized treatments and real-time relapse
prevention [3]. A promising tool to do so is
speech processing. Indeed, voice is associated with
the physiological state of the speaker [4] and it
is possible to implement voice measurements in
passive situations without requiring the patient to
perform a specific task (e.g., interacting with a
connected device).

In this way, sleepiness detection in speech
has been at the heart of two international

challenges proposed in parallel with the 2011 and
2019 Interspeech conferences. During the 2019
challenge, the SLEEP corpus was introduced [5]
with the task of estimating sleepiness (correlation
between predictions and ground truth values). It
contains 16,492 random samples from 915 German-
speaking subjects, whose sleepiness levels are
annotated with the truncated average of three
Karolinska Sleepiness Scale [6, KSS]: one is filled
in by the subjects themselves, while the other
two are annotated by assistants using video and
audio [7]. Contrary to the expectations of the
challenge organizers, the proposed systems did not
show much improvement from the baseline (ρ =
.387 for the best system [8] versus .343 for the
baseline). Even more recent work on this corpus
using the latest deep learning techniques did not
perform better [9, 10].

To investigate the causes of this glass ceiling,
Huckvale et al. [11] conducted a perceptual study
to test the suitability of the corpus for the proposed
regression task. Based on the annotations by 26
British English listeners of 90 samples extracted
from the SLEEP corpus, and using Wisdom of
the Crowd, they achieved performances far beyond
those ever achieved by the systems proposed for
sleepiness estimation tasks (r = .72). Thus, we
claim that the study by Huckvale et al. supports that
human hearing can estimate sleepiness from speech
samples of the SLEEP corpus.

In this article, we propose to reproduce the
perceptual study conducted in [11] (denoted
as “original study”) with naive French-speaking
listeners to confirm or infirm this hypothesis. This
paper is organized as follows. In Section 2, we
introduce the methodology of our replication study
on the SLEEP corpus. We present our results in
Section 3 and discuss them in Section 4. Finally,
we draw conclusions in Section 5.

2. METHOD

Thirty French-speaking listeners without hearing
impairment were recruited by word-of-mouth.

1. Speech Perception ID: 327

201



Since we hypothesize that they can improve the
perception of sleepiness in speech, we collected
their understanding of German and their musical
sensitivity [12]. All the characteristics of the
listeners available in the original and replication
studies are presented in Table 1. Using a KSS, they
annotated the same 100 samples (10 for training) of
the SLEEP corpus as in the original study. The order
of the samples is the same in both studies, and the
samples are shown and annotated one after the other
(no browsing back).

The annotation tools used in each study are shown
in Figure 1. While the version used in the original
study combines at the same time a Lickert-like scale
(gradual textual description) and a Visual Analog
Scale (continuous line with two anchors), the scale
used in our replication study is the standard Lickert
scale as it has been presented to speakers.

Characteristic Huckvale et al. Endymion
n = 26 n = 30

Age 18-60 20-60

Sex - M: 17
F: 13

Impairments
in hearing None None

Native
language English French

German
language

level

German
̸=

first language

“Not at all"
(n = 19)

“At least a little"
(n = 11)

Specific
Musical

Sensibility
- No (n = 16)

Yes (n = 14)

Compensation
£5 (n = 20)

attendance credits
(n = 6)

None

Table 1: Listeners’ characteristics.

3. RESULTS

The results of the same analysis as in the original
study are reported in Table 2.

Z-normalized raw scores. First, the annotations
are z-scaled per listener to eliminate their individual
characteristics. The resulting distributions in both
studies are shown in Figure 2 (left). The raw
z-scaled annotations in the Endymion replication
study resulted in a slightly better Person and Kendall
correlations than in the original study, but these
achievements are still insufficient to accept the
hypothesis that human hearing is able to estimate
sleepiness from speech samples extracted from the
SLEEP corpus.

Wisdom of the crowd. In a second
step, a Wisdom-of-the-Crowd (WoC) procedure is

Metric Huckvale et al. Endymion
Z-scaled annotations

Correlation r = .249 r = .318
Kendall’s coefficient τ = .117 τ = .23

WoC z-scaled annotations
Correlation r = .72 r = .41

Friedman test 1|2,3,4,5,6,7|8,9 1|2,3,4|5,6,7|8,9
UAR 93.6% 69.6%

F1 SL/NSL .87/.96 .51/.81
Complementary results

(no normalization)

ICC2-10 .668 .975
Std/listener
mean (std) 1.83 (.38) 2.34 (.21)

Table 2: Comparison metrics between the original
study and our replication study. WoC: Wisdom of
the Crowd, SL: Sleepy, NSL: Not Sleepy.

applied: for each sample, all z-scaled annotations
are averaged, resulting in an average predicted
score. The resulting distributions are shown
in Figure 2 (right). Compared to the original
study, applying WoC to listener annotations in the
Endymion replication study brings a smaller gain in
the correlation between estimated values and ground
truth.

In order to determine underlying groups in the
annotations, a Friedman test and the corresponding
post-hoc analysis are calculated with the Python
package Pingouin v.0.4.0 [13]. In the original
study, the annotations are grouped into three
sleepiness levels based on a Friedman test: a
‘sleepy’ group (KSS > 7), a ‘normal’ group
(2 ≤ KSS ≤ 8) and an ‘aroused’ group (KSS =
1). The same analysis applied to our replication
study suggests a division into four groups (W =
.263,ddo f = 8, p = .007, pairwise Mann-Whitney):
a ‘sleepy’ and an ‘aroused’ groups (resp. KSS >
7 and KSS = 1), and two ‘slightly aroused’ and
‘slightly sleepy’ subgroups (KSS ∈ {2,3,4} and
KSS ∈ {5,6,7}). Sleepiness subgroups for each
study can be observed in Figure 2 (right).

To calculate binary classification performance,
the ground-truth KSS is binarized into two classes:
Sleepy (KSS > 7) and Not Sleepy (KSS ≤ 7). A
threshold of .26 on the z-scaled WoC annotation
gives a binary classification UAR (Unweighted
Average Recall) of 93.6% in Huckvale et al., while
in our replication study the best cutoff value of .31
yielded a UAR of only 69.6%, which is lower than
the classification performances typically achieved
on the task. To complement these results for further
discussion, we also calculated the F1 value for each
class: in both studies, the F1 values are better in the
NSL class than in the SL class.
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Parfaitement 
éveillé(e)

1 2 3 4 5 6 7 8 9

Très 
éveillé(e) Éveillé(e)

Assez 
éveillé(e)

Ni éveillé(e),
ni

somnolent(e)

Un peu
somnolent(e)

Somnolent(e),
mais sans 
effort pour 

rester 
éveillé(e)

Somnolent(e),
mais avec des 

efforts pour 
rester 

éveillé(e)

Très 
somnolent(e),

luttant 
contre le 
sommeil

Figure 1: KSS annotation tool proposed in the original study (left), and our replication study (right).
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Figure 2: (Left) Violin plots of z-scaled annotations by ground-truth value, in the study of Huckvale et al. (top)
and in the Endymion study (bottom). (Right) Box plot of the WoC z-scaled annotations depending on the ground-
truth KSS. Each dot represents a sample, and the red dashed line represents the cut-off value giving the best UAR.
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Figure 3: Distribution of standard deviation of
annotations per listener (before z-normalization).
The observed difference is statistically significant
(t-test, p < .0001).

4. DISCUSSION
Differences between the studies To find the
underlying cause of the differences between these
analyzes, we calculate the intraclass correlation
(ICC2-10) on the raw annotations before z-
normalization for each study, which is an indicator

of overall agreement between the annotators [14].
It shows that there is a lower agreement between
annotators in the original study (ICC = .668) than
in our replication study (ICC = .975). This could
be the source of the small performance gain bought
by WoC in the Endymion study: averaging already
converging opinions over a sample yields much less
information than averaging dissenting opinions. To
account for the variety of levels used by listeners
in each study, we also calculate the standard
deviation per listener of their annotations before z-
normalization (see Figure 3).

The listeners of the original study use
significantly fewer different levels than those
of the Endymion study. However, in the present
study, listeners use a greater variety of levels,
creating greater finesse in the annotations, albeit
with less contrast (4 subgroups in the Endymion
study vs. 3 subgroups in Huckvale et al.). These
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different behaviors may find their source in the
presentation of the annotation scales between the
two studies: while in the present study the textual
description is directly above the selected value,
some listeners may have inadvertently used the
annotation scale in Huckvale et al. as a simple
visual analog scale, without referring to the text
description at the top of the screen, creating their
own rating scale [15].

What is the influence of the listeners’
characteristics on their annotation performance?
In the Endymion study, two listener characteristics
of particular interest for the task were collected:
(1) their musical sensitivity, since music practice
or a hobby related to music might improve
the perception of speech [12, 16]; (2) their
understanding of the German language, as
annotators who understand the language might
have access to additional linguistic information.
Therefore, for each annotator, we calculate the Mean
Absolute Error (MAE) between the annotations
(after z-scaling) and the corresponding ground
truth values. Then, we min-max normalize them
and compute Mann-Whitney tests with the aim of
distinguishing the MAE between each group.

We find no significant difference for either of
the two previous factors (resp. p = .190 and
p = .228 for musical sensitivity and German
language comprehension). Thus, if some listener
characteristics influence the way they estimate
sleepiness from speech samples, they are not
captured by our study.

Which samples are the hardest to annotate?
For a given sample, we hypothesize that two effects
could explain the differences between annotations
and ground truth. First, listener fatigue, who may
not annotate the last samples as carefully as the
first ones, for whom concentration may be easier
(influence of the order of the samples). Second, the
speaker’s level of sleepiness, since human hearing
might be able to detect some levels of sleepiness
more easily than others (influence of the KSS).
For each study and each sample, we computed
the MAE between the ground truth values and the
listeners’ z-score annotation (MAE per sample). To
make the ground-truth and z-scale annotation values
comparable, we min-max normalize them so that
their minimum value is 0 and their maximum value
is 1. Then we calculated the correlation (Spearman’s
ρ) between the MAE per sample and their order and
between the MAE per sample and the ground-truth
KSS. The results are presented in Table 3.

The MAE does not correlate with the sample
index in either study, which excludes the hypothesis

Factor Huckvale et al. Endymion
Order ρ = .09, p = .39 ρ =−.13, p = .24
KSS ρ = .20, p = .05 ρ = .40, p < 10−3

Table 3: Correlation between the MAE per
sample and their order and ground truth KSS.

of listener fatigue. However, the per-sample MAE
correlates weakly with the KSS ground truth of the
original study and more strongly with the Endymion
study: the higher the KSS, the larger the errors
between annotations and ground truth. We have
put forward two hypotheses about this result. First,
the human auditory system may be more sensitive
to vocal expressions of alertness than to sleepiness,
which explains the increase in MAE with KSS.
Coming back to the classification results from
Section 3, the F1 values are better in the NSL class
than in the SL class, which supports this hypothesis.
Second, we cannot exclude the hypothesis that some
speakers could have completed a KSS indicating
a high level of sleepiness at the time of their
evaluation, but were then stimulated by the various
recording tasks. Therefore, sleepy subjects may
make (involuntary) efforts to compensate for their
sleepiness in order to complete the task, creating
a difference between their self-reported level of
sleepiness, assessed before the task, and the
expression of their sleepiness in their voice.

5. CONCLUSION

To conclude, our replication study did not provide
results as conclusive as the previous study conducted
by Huckvale et al. [11]. Therefore, we cast doubt
on the assumption that the human ear is capable of
correctly assessing sleepiness from speech samples
extracted from the SLEEP corpus. Regarding the
factors influencing the annotation of the samples,
we did not identify any influence of the annotators’
characteristics. On the other hand, we found a
link between the level of sleepiness of the speakers
and the quality of sleepiness annotation in these
two studies, with listeners having more difficulty in
estimating very sleepy speakers.
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