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ABSTRACT

This article investigates the perception of vocal
manifestations of excessive sleepiness. Although
previous efforts have demonstrated that naive
listeners are able to estimate behavioral sleepiness,
we aim to assess in this study this ability
on both subjective (medical questionnaires) and
physiological (polysomnography) measurements of
sleepiness. We asked 71 naive French-speaking
listeners to annotate a subset of the Multiple Sleep
Latency Test corpus, each listener participating in
two annotation sessions, using one among three
annotation tools, with two different annotation
paradigms (with or without reference). Based
on these data, we then evaluated their ability
to correctly annotate subjective or physiological
sleepiness depending on the annotation tool or the
paradigm of the test they undertook. We also
measured the interaction between their performance
and their characteristics, as well as the correlation
between the listeners’ performances and speakers’
characteristics.
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1. INTRODUCTION

Voice analysis is a promising tool for measuring
sleepiness-related symptoms frequently and under
normal patient living conditions [1]. Sleepiness is
a peculiar symptom of interest in neuropsychiatric
diseases that has a very high prevalence in the
general population (up to 40% of the general
population [2]) and induces negative consequences
in both personal and public health, increasing the
risk of disability and mortality [3].

Hence, automatic detection of sleepiness using
speech samples has been the focus of two

international challenges, proposed in parallel to the
2011 and 2019 Interspeech conferences. During the
last challenge on the SLEEP corpus, the proposed
systems did not lead to significant improvements
in performance, the winner achieving a correlation
coefficient between estimated and ground-truth
values of sleepiness levels of ρ = .387 [4].
More recent propositions using the latest machine
learning technologies have not reached much better
performances [5, 6, 7].

To investigate the feasibility of the task, the
team of Huckvale et al. conducted a perceptual
study based on the SLEEP corpus [8]. Using 90
samples of the corpus, annotated by 26 listeners,
they obtained a correlation of r = .72 between
annotations processed using Wisdom of the Crowd
and ground-truth values. Thus, they concluded
that human hearing can estimate sleepiness through
voice samples and that the bottleneck in the
automatic estimation performances relies on the
corpus content. However, this work suffers from
three major limitations: (1) In a study using the exact
same data, we failed to replicate these conclusions
using the annotations made by 30 French-speaking
listeners [9]; (2) In the SLEEP corpus, the samples
are very short (between 3 and 5 seconds), whereas
the minimum duration to estimate sleepiness with
computational methods seems to be around 20
seconds [10]; (3) The ground-truth sleepiness label
in the SLEEP corpus has never been validated in
Sleep Medicine and is more a behavioral than a
subjective sleepiness measurement [11], since it
relies on the annotation by investigators of the
behavioral manifestation of sleepiness, including
voice (label contamination) [10].

Thus, to investigate the ability of human hearing
to estimate sleepiness annotated with medicine-
validated tools, we use in this study the Multiple
Sleep Latency Test corpus (MSLTc) [10, 12], which
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has been recorded during a MSLT, a gold standard
polysomnographic test in sleep medicine [11],
and contains physiological (polysomnography) and
subjective (medical questionnaire) sleepiness labels.
A specificity of MSLTc compared to other corpora
is the recorded population: sleep clinic patients
affected by various forms of hypersomnia, for
which physiological and subjective sleepiness is
uncorrelated [13].

This paper presents the results of the Endymion
study, which takes advantage of this particularity
to investigate which of subjective or physiological
sleepiness is more easily detected in voice by naive
listeners. The paper is organized as follows. We
first introduce the methodology of our perceptual
experiment in Section 2. Then, we present and
discuss our results in Section 3. Finally, we draw
conclusions in Section 4.

2. METHOD

2.1. Perceptual experiment

We recruited 71 native French-speaking annotators
who had no experience in sleepiness assessment and
no hearing problems. Since they can change the
perception of speech, the sex [14], the age [15]
and the musical sensibility [16] (any hobby or job
related to music in this study) of the listeners were
collected, as reported in Table 1.

N Values 71

Age (years)
20-25 30
25-30 26
>30 15

Sex F 22
M 49

Musical Sensibility Sensible 30
Not. Sensible 41

Table 1: Listeners’ characteristics.

The samples used in our experiment are extracted
from the Multiple Sleep Latency Test corpus
(MSLTc) [10, 12]. This corpus contains the
recordings of 93 patients admitted to the sleep
medicine department of the Bordeaux University
Hospital for the diagnosis and/or treatment of rare
hypersomnia diseases. They undertook a Multiple
Sleep Latency Test (MSLT), consisting of asking
them to take 20-minute naps every two hours, from
9a.m. to 5p.m. Before each nap, the patients were
recorded reading texts of approximately 250 words
extracted from Le Petit Prince (Saint-Exupéry). In
order to reduce the variability of annotations due
to the large number of speakers in the corpus, we

selected 20 patients (10M/10F) from the MSLTc so
that their variations of physiological (sleep latency)
and subjective (Karolinska Sleepiness Scale and
Cartoon Faces Scale) sleepiness across the naps
were maximal. Furthermore, since the MSLTc
recordings are long (mean duration: 77s), we kept
only the first 30 seconds of each audio file to
avoid fatiguing the listeners. The samples are then
normalized in amplitude to -3dB. This constitutes
the Endymion subcorpus.

The perceptual test consisted of asking the
listeners to annotate one of the following three
sleepiness measurements on these samples: (1)
the duration after which patients fall asleep after
the reading task, assessed by polysomnography.
This value, named sleep latency, is a physiological
measurement of short-term sleep propensity [11]
and ranges from 0 to 20 minutes; (2) the score
of the patients on the Karolinska Sleepiness Scale
(KSS) [17], a nine-level scale that asks them to
rate their level of sleepiness “during the last 10
minutes”, filled just after each voice recording; (3)
their score on the Cartoon Faces Scale (CFS) [18],
also filled just after each voice recording, ranges
from 0 to 4. The listeners annotated the KSS and
CFS using the corresponding questionnaire, while
sleep latency is annotated using a 100-level slider
whose end anchors are ‘Perfectly awake’ on the
left, and ‘Extremely sleepy’ on the right. The three
annotation tools are represented in Figure 1.

During their contribution to the experiment,
listeners were asked to participate in two annotation
paradigms. On the one hand, a Random
paradigm, during which they blindly annotated
10 samples drawn pseudorandomly among the
Endymion subcorpus. On the other hand, a Baseline
paradigm, for which the listeners had access to
a reference sample of the patients when they are
awake (recorded before an iteration of the MSLTc
during which they stayed awake). The annotators
then annotated the remaining four samples of
the same patient, corresponding to the other four
iterations of the MSLT. In this paradigm, each
listener was asked to annotate the samples of
two patients from the study subcorpus. In both
paradigms, the samples were annotated one after
the other (no browsing back). The order of the
two paradigms and the used annotation tool was
randomized.

2.2. Data Analysis

First, we scaled the annotations per annotator to
remove their specific annotation behavior (z score).
Then, to facilitate the comparison between the
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Figure 1: Annotation tool used in this perceptual experiment. (Top) Karolinska Sleepiness Scale. (Bottom left)
Cartoon Faces Scale. (Bottom Right) Slider.

scales, we normalized the scores of each scale
between 0 and 1. The same transformation is applied
to the ground-truth values. To be compared with
other scales, the annotated score on the slider and
the corresponding ground-truth sleep latency are
inverted, so that 0 corresponds to sleep latencies
of 20 min (the patient did not fall asleep) and 1
corresponds to sleep latencies of 0 min (the patients
felt asleep immediately). We thus obtain for each
task a "sleepiness score" between 0 and 1 that can be
compared between paradigms and annotation tools.

Since the number of points per annotator is too
small to use correlation metrics [19], we measured
annotation performance using the Mean Absolute
Error (MAE), which is the arithmetic mean of the
absolute error between annotation and ground truth
across the samples. As a consequence, a lower
MAE means fewer errors and thus better annotation
performances.

3. RESULTS AND DISCUSSION

3.1. Paradigm and task

To identify the combination of paradigm and
task favoring annotation performances, the MAE
between the annotation of the listeners and the
expected ground-truth values for each combination
of task and paradigms are reported in Table 2.

The predominant effect affecting performances
is the task: the best MAEs (.31-.28) are obtained
annotating subjective sleepiness (KSS or CFS –
with few differences between them) while the
performances of annotating physiological sleepiness
using the slider are distinctly worse (.47-.39).
One hypothesis to explain this observation is
that subjective sleepiness affects predominantly the
acoustic quality of voice [20], while physiological
sleepiness interfer with reading abilities [21, 22].

Paradigm KSS CFS Sleep Latency

Random .30 .31 .40
(n=220) (n=250) (n=240)

Baseline .29 .28 .45
(n=192) (n=192) (n=184)

Both .29 .30 .46
(n=412) (n=442) (n=424)

Table 2: MAE between normalized annotation
and ground truth for each paradigm and each
annotation task.

Since the listeners only had access to short extracts
(30s), we hypothesize that their annotation relies
mainly on acoustic and prosodic information, hence
detecting subjective sleepiness.

The second predominant effect is a small but
notable difference between the Random and the
Baseline paradigms, the latter leading to a better
MAE (-1% of absolute MAE for the KSS, -3% for
the CFS, -2% for the slider). We hypothesize that
these differences are due to the reference audio file.
Indeed, when picking a random audio sample, it is
almost impossible to distinguish the sleepiness state
of the speaker from all the other traits expressing
through voice. By proposing such a reference, the
listener may estimate accurately the sleepiness state
of the patients independently from their traits, that
are also expressing in the reference audio file in
which they are not sleepy. Moreover, annotating the
same speaker four times in a row in four different
states could reinforce this distinction between the
expression of the speaker’s state and traits through
voice.

3.2. Influence of listeners characteristics

In order to identify features of the listeners that
could improve or interfere with their annotation
capabilities, we tested (Mann-Whitney’s U) on
all tasks and paradigms whether the MAE per
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listener before normalization was different between
the following different categories: "first annotation
session" vs. "second annotation session"; "M"
vs. "F"; "Musical Sensitivity" vs. "No musical
sensitivity". Moreover, regarding differences
through age, we computed an univariate ANOVA
across the three categories.

None of the factors taken into account led to
significant differences in annotation performance
in terms of MAE (p > .05): if some listeners’
characteristics influence the way they annotate
sleepiness from voice samples, they have not been
captured by our study and would eventually require
further investigation.

3.3. Influence of patients’ characteristics

Factor Paradigm Task MAE
ρ p

Fatigue Random CFS .51 .02
All .48 .04

Anxiety Random Slider .56 .01
All .49 .03

Education level
Random

Slider
-.47 .04

Baseline -.57 .009
All -.57 .009

Table 3: Significant correlations between MAE
per patient and patients’ characteristics.

To measure the characteristics of the speakers
that could influence the annotation of their level of
sleepiness, we calculated the correlation (Spearman
ρ) between MAE per speaker (before normalization)
and the following factors: age, BMI, neck
circumference, educational level (highest level
of study after the French Certificate of general
education), fatigue [23], Alertness [24], and Anxiety
and Depression [25]. We also tested sex differences
(Mann-Whitney’s U). The significant correlations
(p < .05) are reported in Table 3.

The speakers’ fatigue level interferes with the
annotation performance on the Random paradigm:
when speakers report high levels of fatigue, listeners
annotating their samples make more errors (i.e.
MAEs are higher). This difference was not observed
in the baseline paradigm. Similarly, the speaker’s
anxiety level interferes with the performance of
listeners on the Random paradigm. Finally, the
speakers’ education level anticorrelates with the
MAE using the slider: when the education level
of the speaker increases, the errors made by the
listeners when estimating their sleep latency using
the slider decrease.

Fatigue and anxiety interfere with the correct
annotation of sleepiness based on voice samples

on the Random paradigm but not on the Baseline
paradigm: we assume that the Baseline paradigm
effectively allows listeners to annotate the speaker’s
sleepiness states independently of their trait features
– such as fatigue or anxiety. An exception is the
educational level of the speakers, which interferes
with the annotation of physiological sleepiness on
all the paradigms (Random, Baseline, and All).
We hypothesize that in that task, physiological
sleepiness has the same impact over voice as a
lower educational level: the sleepy patients make
more reading errors [21] and have different reading
behaviors regarding the location and duration of the
reading pauses [22].

4. CONCLUSION

This perceptual experiment is the first to investigate
the ability of human hearing to differentiate between
subjective and physiological sleepiness. The
collected annotations show a better estimation of
subjective sleepiness than physiological sleepiness
by naive listeners. This observation leads us
to hypothesize that the acoustic correlates of a
subjective level of sleepiness are more numerous
than those of its physiological counterpart, which
is corroborated by the interference of education
level with the estimation of physiological sleepiness
only. Assessing physiological sleepiness using voice
and speech may thus require additional information,
i.e. features related to cognitive planning such as
reading proficiency, length of pauses or sustained
vowels. Moreover, the better performances obtained
using the Baseline paradigm than using the Random
one suggest that human earing estimate better
variations of sleepiness states than its absolute level,
opening new research paradigms in the automatic
estimation of sleepiness.

Finally, no measured listeners’ characteristics
interacted with performances, while errors were
correlated with speakers’ fatigue, anxiety, and
educational level: these results should incite to
consider these parameters when automatically
estimating sleepiness using voice features.
However, such results may also be linked to
the reading task on which the patients have been
recorded: they still have to be confirmed using
spontaneous speech recordings.

5. ACKNOWLEDGEMENTS

We are deeply indebted to all the participants who
spent time participating in the Endymion study.

1. Speech Perception ID: 326

199



6. REFERENCES

[1] G. Fagherazzi, A. Fischer, M. Ismael, and
V. Despotovic, “Voice for Health: The Use of Vocal
Biomarkers from Research to Clinical Practice,”
Digital Biomarkers, pp. 78–88, Apr. 2021.

[2] T. B. Young, “Epidemiology of daytime sleepiness:
definitions, symptomatology, and prevalence,” The
Journal of Clinical Psychiatry, vol. 65 Suppl 16,
pp. 12–16, 2004.

[3] A. J. Scott, T. L. Webb, M. Martyn-St James,
G. Rowse, and S. Weich, “Improving sleep quality
leads to better mental health: A meta-analysis
of randomised controlled trials,” Sleep Medicine
Reviews, vol. 60, p. 101556, 2021.

[4] G. Gosztolya, “Using Fisher Vector and Bag-of-
Audio-Words Representations to Identify Styrian
Dialects, Sleepiness, Baby & Orca Sounds,” in
Interspeech 2019, 2019, pp. 2413–2417.

[5] S. Amiriparian, P. Winokurow, V. Karas, S. Ottl,
M. Gerczuk, and B. W. Schuller, “A Novel
Fusion of Attention and Sequence to Sequence
Autoencoders to Predict Sleepiness From Speech,”
arXiv 2005.08722, 2020, _eprint: 2005.08722.

[6] J. V. Egas-Lopez and G. Gosztolya, “Deep Neural
Network Embeddings for the Estimation of the
Degree of Sleepiness,” in ICASSP 2021, Toronto,
ON, Canada, 2021, pp. 7288–7292.

[7] E. L. Campbell, L. Docio-Fernandez, C. Garcia-
mateo, A. Wittenborn, J. Krajewski, and
N. Cummins, “Automatic detection of short-
term sleepiness state. Sequence-to-Sequence
modelling with global attention mechanism.” in
Workshop on Speech, Music and Mind, 2022.

[8] M. Huckvale, A. Beke, and M. Ikushima,
“Prediction of Sleepiness Ratings from Voice by
Man and Machine,” in Interspeech 2020, 2020.

[9] Anonymous, “"Prediction of Sleepiness Ratings
from Voice by Man and Machine": the Endymion
replication study,” in sumbitted to ICPhS 2023,
2023.

[10] V. P. Martin, J.-L. Rouas, J.-A. Micoulaud-
Franchi, P. Philip, and J. Krajewski, “How
to Design a Relevant Corpus for Sleepiness
Detection Through Voice?” Frontiers in Digital
Health, vol. 3, p. 686068, Sep. 2021. [Online].
Available: https://www.frontiersin.org/articles/10.
3389/fdgth.2021.686068/full

[11] V. P. Martin, R. Lopez, Y. Dauvilliers, J.-L. Rouas,
P. Philip, and J.-A. Micoulaud-Franchi, “Sleepiness
in adults: An umbrella review of a complex
construct,” Sleep Medicine Reviews, p. 101718,
Nov. 2022. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1087079222001319

[12] V. P. Martin, J.-L. Rouas, J.-A. Micoulaud-
Franchi, and P. Philip, “The Objective and
Subjective Sleepiness Voice Corpora,” in LREC
2020, Marseille, France, 2020, p. 6525-6533.
[Online]. Available: https://aclanthology.org/2020.
lrec-1.803

[13] R. B. Sangal, “Subjective sleepiness ratings

(Epworth sleepiness scale) do not reflect the same
parameter of sleepiness as objective sleepiness
(maintenance of wakefulness test) in patients with
narcolepsy,” Clinical Neurophysiology, vol. 110,
no. 12, pp. 2131–2135, 1999.

[14] M. Sato, “The neurobiology of sex differences
during language processing in healthy adults:
A systematic review and a meta-analysis,”
Neuropsychologia, vol. 140, p. 107404, Mar. 2020.

[15] H. Goy, M. Kathleen Pichora-Fuller, and P. van
Lieshout, “Effects of age on speech and voice
quality ratings,” The Journal of the Acoustical
Society of America, vol. 139, no. 4, pp. 1648–1659,
Apr. 2016.

[16] S. S. Asaridou and J. M. McQueen, “Speech and
music shape the listening brain: evidence for
shared domain-general mechanisms,” Frontiers in
Psychology, vol. 4, 2013.

[17] T. Åkerstedt and M. Gillberg, “Subjective and
objective sleepiness in the active individual.” Int J
Neurosci, vol. 52, pp. 29–37, 1990.

[18] C. C. Maldonado, A. J. Bentley, and D. Mitchell,
“A Pictorial Sleepiness Scale Based on Cartoon
Faces,” Sleep, vol. 27, no. 3, pp. 541–548, 2004.

[19] M. Rhemtulla, P. Brosseau-Liard, and V. Savalei,
“When can categorical variables be treated as
continuous? A comparison of robust continuous
and categorical SEM estimation methods under
suboptimal conditions.” Psychological Methods,
vol. 17, no. 3, pp. 354–373, Sep. 2012.

[20] V. P. Martin, J.-L. Rouas, P. Thivel, and
J. Krajewski, “Sleepiness detection on read
speech using simple features,” in 10th Conference
on Speech Technology and Human-Computer
Dialogue, Timisoara, Romania, 2019.

[21] V. P. Martin, G. Chapouthier, M. Rieant, J.-L.
Rouas, and P. Philip, “Using reading mistakes as
features for sleepiness detection in speech,” in
Speech Prosody 2020, Tokyo, Japan, 2020, pp.
985–989.

[22] V. P. Martin, B. Arnaud, J.-L. Rouas, and P. Philip,
“Does sleepiness influence reading pauses in
hypersomniac patients?” in Speech Prosody 2022.
ISCA, 2022, pp. 62–66.

[23] L. B. Krupp, N. G. LaRocca, J. Muir-Nash,
and A. D. Steinberg, “The fatigue severity scale.
Application to patients with multiple sclerosis
and systemic lupus erythematosus,” Archives of
Neurology, vol. 46, no. 10, pp. 1121–1123, 1989.

[24] A. Shahid, S. Chung, L. Maresky, A. Danish,
A. Bingeliene, J. Shen, and C. Shapiro, “The
Toronto Hospital Alertness Test scale: relationship
to daytime sleepiness, fatigue, and symptoms of
depression and anxiety,” Nature and Science of
Sleep, p. 41, 2016.

[25] A. S. Zigmond and R. P. Snaith, “The hospital
anxiety and depression scale,” Acta Psychiatrica
Scandinavica, vol. 67, no. 6, pp. 361–370, 1983.

1. Speech Perception ID: 326

200


