
USING WORD-LEVEL FEATURES FOR PROSODIC PROMINENCE
DETECTION IN CONVERSATIONAL SPEECH

Julian Linke1, Gernot Kubin1, Barbara Schuppler1

1Signal Processing and Speech Communication Laboratory, Graz University of Technology
1{linke, gernot.kubin, b.schuppler}@tugraz.at

ABSTRACT

This paper focuses on the automatic detection of
prominent words in conversational speech. Most
tools for prominence detection rely on prosodic fea-
tures extracted at a syllable- or phone level and their
accuracy thus strongly depends on the quality of
the given phone-level segmentation. Given the high
degree of pronunciation variation in conversational
speech, automatic phonetic segmentation is not ac-
curate enough to detect prominence reliably. Here
we explore different approaches to prominence de-
tection that require merely a prior word-level seg-
mentation. The first experiment shows that by using
word-level prosodic features cross-validation accu-
racies of 88%± 4% can be reached, and that word
duration is the most important feature. The second
experiment introduces entropy-based fundamental
frequency and intensity features for prominence de-
tection. Our findings suggest that entropy-based,
word-level features can provide a robust approach to
detecting prominent words in conversational speech.
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1. INTRODUCTION

Many tools to detect prosodic prominence (e.g.,
ProsAlign [1], Tamburini and Wagner [2] or Mishra
et al. [3]) operate with features which rely on syl-
labic structure and/or phonetic annotations. These
tools are motivated by linguistic studies that found
that certain syllable-level characteristics of funda-
mental frequency (F0), intensity (RMS) and dura-
tion (e.g., speech rate, stressed syllable duration)
are cues to perceived prominence, where the con-
clusions drawn about these cues’ importance are
not uniform: [4] showed that vowel duration is a
more important cue for prominence perception than
RMS, whereas [5, 6] found F0 to be a more im-
portant cue for prominence than syllable duration.
[7] reported that RMS is a more important cue of
perceived prominence than other continuous-valued
prosodic variables [7]. In the mentioned studies, ex-

tracted durational features are related to vowel or
syllable durations (e.g., [4, 7]). In contrast, [8] found
word duration to be the strongest cue to prominence.

Given the high degree of reduction and overlap-
ping sounds in conversational speech [9], the quality
of automatically created phone segmentations has a
lower accuracy than for read speech. [10] showed
that, whereas for read speech, automatic phonetic
annotations are good enough for a subsequent au-
tomatic prosodic boundary detection, for conversa-
tional speech, manual correction is required. In or-
der to avoid the necessity of manual correction, we
explore the use of word-level prosodic features, as
the automatic detection of word boundaries showed
to have a higher precision for spontaneous speaking
styles than of phone boundaries.

So far, most studies on prosodic prominence ana-
lyzing F0/RMS contours considered features related
to specific characteristics of those curves (i.e., mean,
maximum, etc.). To the best of our knowledge, it
has not yet been investigated whether entropy-based
F0/RMS features, which directly relate to their dis-
tribution distinguishing prominence levels. In gen-
eral, entropy-based features have broadly been used
in speech science: For instance, [11] use relative en-
tropy to measure the distance between two speech
spectral distributions in concatenative synthesis ap-
plications whereas [12] showed that spectral entropy
features which interpret the spectrum as a proba-
bility mass function, improved the performance of
an automatic speech recognition (ASR) system. A
study on voice signal characterization tested entropy
measures coming from raw audio signals in order to
extend voice analysis methods [13]. With respect to
prosody of emotional expressions, it has been shown
that the use of features capturing F0/RMS variability
by calculating entropy from F0/RMS-curves helps
to distinguish between arousal conditions in a free-
speech setting [14].

This paper presents two approaches for auto-
matic prominence detection in conversational Aus-
trian German. The first experiment uses traditional
F0/RMS features (i.e., maximum, mean, etc.) ex-
tracted a the word level and durational features (i.e.,
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word duration and speech rate variation). The sec-
ond experiment explores a new approach, i.e., the
use of entropy-based F0/RMS features, which im-
plicitly encode distribution information and thus do
not require phone-level information.

2. MATERIALS AND METHODS

2.1. GRASS Corpus

The Graz Corpus of Read and Spontaneous Speech
(GRASS) [15] contains Austrian German conversa-
tional speech from 38 Austrian speakers, contain-
ing a total of approx. 20h of speech. Word- and
phone level segmentations were created by means
of a forced alignment using a Kaldi-based ASR sys-
tem with a lexicon containing on average 5.57−6.18
pronunciation variants per word type [16]. Phonet-
ically trained transcribers created prosodic annota-
tions for a total of 5234 word tokens from 34 speak-
ers of GRASS. The prominence annotations distin-
guished the prominence levels 0 (no prominence,
PL0), 1 (weak prominence, PL1), 2 (strong promi-
nence) and 3 (emphatic prominence) [17]. In this
study, we combined prominence levels 2 and 3, as
emphatic prominence occurred rarely (PL2). Anno-
tations were created in three stages: One annotator
created a first version, which later was corrected by
her/him and subsequently corrected by one of the
other annotators. Based on a small subset anno-
tated by two different annotators in those stages, the
inter-annotator agreement was calculated: The over-
all Cohen‘s kappa was 0.72 (598 tokens), 0.72 for
level 0 vs. 1 (371 tokens), 0.92 for level 0 vs. 2/3
(446 tokens) and 0.57 for level 1 vs. 2/3 (275 to-
kens). Other studies obtained similar agreements of
0.53 [2] or 0.84 [7].

2.2. Basic Prosodic Features

84 F0 and RMS features: All features were cal-
culated at the word level. We calculated F0 with
the library AMFM decompy [18] which includes
an implementation of the pitch detection algorithm
YAAPT [19]. Intensity features were generated di-
rectly from the waveform by calculating the root
mean square. For F0/RMS, and their respective first
and second derivatives, we extracted 10 measure-
ments: maximum, minimum, range, relative posi-
tion of maximum and minimum in the word, mean,
median, first and third quartile and standard devi-
ation (60 features). Additionally, we extracted left
and right slope of the maximum and minimum, ab-
solute and relative onset and offset within the word,
as well as the maximum, minimum, range and mean

relative to the utterance (24 features).

12 Durational features (DUR): We extracted word
duration, phrase-level speech rate (i.e., number of
segments per phrase), local speech rate (i.e., the
number of segments per word duration), and rela-
tive speech rates (i.e., the ratio of the local speech
rate and the minimum, maximum or median of lo-
cal speech rates within a phrase). Additionally, we
calculated the minimum, maximum, range, mean,
median and standard deviation of local speech rates
within a phrase.

2.3. Entropy-based Features

Entropy measures the spread of probability distri-
butions and provides a measure of uncertainty of a
random variable X [20]. If the random variable X
assumes values xi ∈ X where X is a finite set, the
definition of entropy can be stated as

(1) H(X) =−∑
i

pi · log pi,

where pi = Pr{X = xi} describes the probability of
X taking the value xi, assuming that pi · log pi = 0
for pi = 0.

If we observe a sequence of N (non-negative)
feature values ⟨ f [1], f [2], . . . , f [N]⟩ within a given
word, we can measure the spread of these values also
by a formal entropy where the (pseudo-)probability
distribution is defined by normalizing the feature
values

(2) pi =
f [i]

∑
N
i=1 f [i]

such that the condition for the total probability is ful-
filled: ∑

N
i=1 pi = 1.

With this definition, the entropy (1) achieves its
maximum Hmax = logN if the feature sequence is
constant f [1] = f [2] = · · · = f [N] = const., and its
minimum Hmin = 0 if all probabilities according to
equation (2) turn out to be close to either 1 or 0,
e.g., for a very non-uniform feature sequence within
the given word. Note that this entropy measures
the (relative) feature variability within the word, but
without accounting for the time order of the feature
contour. Finally, we also experimented with a nor-
malized entropy H̃ obtained from division by the se-
quence length N:

(3) H̃ =
H
N
.

For our experiments, we applied equation (2) to
the extracted F0/RMS contours and calculated four
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Figure 1: Confusion matrices (3 classes) with F0
and RMS features (a) and all features (b).

additional entropy-based features (ENT) with equa-
tions (1) and (3) leading to two (pseudo-)entropies
H and two normalized (pseudo-)entropies H̃ of
F0/RMS.

Simulations with uniform and non-uniform distri-
butions indicated that these entropy-based features
depend primarily on the number of possible out-
comes N, which in our case corresponds to word
duration. Nevertheless, for words of similar lengths
these measurements also encode contour variations
by capturing deviations from uniform distributions.

2.4. Random Forest

We trained Random Forest classifiers (RFCs) with
the scikit learn toolkit (version 0.21.3) [21] RFCs
were built with 100 estimators, default maximum
depth, a minimum samples split of 2 and the Gini
impurity for measuring the quality of a split. For
each of the different feature sets, we present re-
sults from two conditions, one for 2 classes (PL0
vs. PL2), and one for 3 classes (PL0 vs. PL1 vs.
PL2). Each classification experiment involved two
steps: First, RFCs were trained with the entire fea-
ture set in order to learn about the feature’s relative
importance. Second, a (final) RFC was trained with
the 15 most important features as given by the first
step. The training and test sets were based on a
random 80/20 split and we present associated F1-
scores. Additionally, we provide means and stan-
dard deviations of accuracies resulting from 10-fold
cross-validation experiments in order to estimate the
model’s generalization ability.

3. THE ROLE OF DURATIONAL FEATURES

In order to learn about the role of durational
features for prominence detection, we conducted
two classification experiments. While the first
RFC uses all 96 F0, RMS and durational features
(F0+RMS+DUR) described in Sec. 2.2, the sec-
ond RFC uses the 84 F0/RMS related features only.
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Figure 2: Confusion matrices (2 classes) with F0
and RMS features (a) and all features (b)
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Figure 3: RFC feature importances for 3 class
problem with F0, RMS and DUR features.

Fig. 1 and Fig. 2 show the confusion matrices of
RFCs which were trained on the entire basic fea-
ture set (F0+RMS+DUR) and on a subset with-
out durational features (F0+RMS). We observe that
classification performance between non-prominent
and highly prominent words is high in both cases,
but that non-prominent words were better classified
when the RFC was trained with the entire feature set
than without DUR (recall 82% vs. 77%). For PL0
the F1 increased form 80.3% to 84.4% by adding
DUR, and for PL2 from 89.8% to 91.6%. Cor-
responding cross-validation accuracies were 88%±
4% (F0+RMS+DUR) and 85%±4% (F0+RMS).

RFCs with 3 classes (Fig. 1) showed a simi-
lar behaviour since the recall for PL0 of 61.6%
(F0+RMS+DUR) was higher than the recall of
55.2% (F0+RMS). However, in case of PL1, re-
calls of only 45.7% (F0+RMS+DUR) and 40.6%
(F0+RMS) were achieved, while in both cases
approx. 35% of tokens from PL1 were pre-
dicted as PL2. Respective F1s of PL0/PL1 were
63.1%/47.2% (F0+RMS+DUR) and 55.9%/43.2%
(F0+RMS). Interestingly, recalls of highly promi-
nent words were similar in both cases (ap-
prox. 76%). In this case, cross-validation accuracies
were 63% ± 5% (F0+RMS+DUR) and 60% ± 6%
(F0+RMS). Fig. 3 shows the feature ranking corre-
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Figure 4: Confusion matrices from experiments
with 15 best features (F0+RMS+DUR+ENT).

sponding to the averaged impurity decrease of the
RFC for 3 classes trained with the 15 best features
(F0+RMS+DUR). Word duration (w_dur) has by far
the highest importance among all features, capturing
almost 20% of the overall importance. Other dura-
tional features (see Sec. 2.2) like the local speech
rate (lspr) or relative speech rates (rspr_median and
rspr_max) were also present in the feature ranking
and had similar importances as the relative relation-
ships of the F0/RMS contours. This finding is in line
with the study by [8], showing that word-duration is
the most important feature for prominence detection
in read speech.

Overall, durational features improve the RFC ac-
curacy for detecting prominent words of conversa-
tional speech. Results from previous investigations
pointed towards different trends. Whereas [4] found
vowel duration to be an important cue to prominence
in spontaneous speech, [6] concluded that F0 and [7]
that RMS play a more important role. These studies,
however, did not consider word duration, which in
our experiments resulted to be the most important
feature among all durational, F0/RMS features to
classify prominence in conversational Austrian Ger-
man.

4. THE ROLE OF ENTROPY-BASED
FEATURES

To learn about the role of entropy-based fea-
tures (ENT) for prominence detection, and whether
they can complement phone-based durational fea-
tures, we conducted two classification experi-
ments. While the first RFC uses all 100 features
(F0+RMS+DUR+ENT), the second RFC does not
use any durational features (F0+RMS+ENT).

The RFC for 3 classes with F0+RMS+DUR+ENT
features resulted in a large number of confusions
of PL1 (recall/F1: 48%/48.6%) with PL0 or PL2,
where approx. 19% of PL1 was classified as PL0
and 33% as PL2. In contrast, recalls/F1s of
65.6%/66.1% (PL0) and 74.1%/73.1% (PL2) in-
dicated less confusions with others classes (i.e.,

only 4− 5% of non-prominent or highly-prominent
words were classified as highly-prominent or non-
prominent words). This result is to be expected,
as also the inter-rater agreement showed to be
lowest/highest for these classes. Overall cross-
validation accuracies reached 62%±7%. Compared
to the RFC without ENT, the classification of non-
prominent words improves by adding the ENT fea-
tures (recall 66% > 62%). Furthermore, the com-
parison with the RFC trained without any durational
features (F0+RMS+ENT) indicated that developed
entropy-based features compensate for durational
information (similar F1s for classes PL0/PL2 of ap-
prox. 84%/91%). With respect to the feature impor-
tances for the RFC with F0+RMS+DUR+ENT, we
observed that the 5 best features comprised word du-
ration as well as the entropy and normalized entropy
features, which all had average importances of > 8%
(capturing approx. 45% of the overall importance),
while all other features had importances < 6.7%.

For both the 2 and the 3 class problem, promi-
nence detection was best when adding entropy-
based F0/RMS-features to the feature set. To the
best of our knowledge, there exist no earlier stud-
ies on prominence detection using similar entropy-
based F0 and RMS features.

5. CONCLUSION

This paper investigated different word-level features
to detect prosodic prominence, to avoid the necessity
of creating manual phonetic segmentations for con-
versational speech. Overall, the classification per-
formances achieved with our different sets of fea-
tures were in the range of the human inter-rater
agreements for the respective classes. We found
that durational features (incl. speech rate variations)
have a higher importance than F0/RMS features, and
that among them, word duration is by far the most
important feature. Experiments with entropy-based
F0/RMS features showed that they encode neces-
sary durational information along with information
about the features’ distribution, making them useful
for classifying prominence levels in conversational
speech. In future, we will explore whether entropy-
based F0/RMS features are also useful to capture
other prosodic characteristics in speech, both with
respect to speech analysis as well as in ASR.

6. ACKNOWLEDGEMENTS

This work was partly funded by grant P-32700-NB
from FWF (Austrian Science Fund). We would like
to thank the transcribers Nina Richter and Nikolaus
Tlapak for their efforts.

16. Speech Technology ID: 298

3104



7. REFERENCES

[1] Braunschweiler, N. 2003. ProsAlign - The Auto-
matic Prosodic Aligner. Proc. of ICPhS, 3093–
3096.

[2] Tamburini, F., Wagner, P. 2007. On automatic
prominence detection for German. Proc. of Inter-
speech, 1809–1812.

[3] Mishra, T., Sridhar, V. R., Conkie, A. 2012.
Word prominence detection using robust yet simple
prosodic features. Proc. Interspeech 2012, 1864–
1867.

[4] Cole, J., Mo, Y., Hasegawa-Johnson, M. 2010.
Signal-based and expectation-based factors in the
perception of prosodic prominence. Laboratory
Phonology 1, 425–452.

[5] Arnold, D., Wagner, P., Baayen, R. H. 2013. Using
generalized additive models and random forests to
model prosodic prominence in German. Proc. of
Interspeech, 272–276.

[6] Niebuhr, O., Winkler, J. 2017. The relative cueing
power of f0 and duration in German prominence
perception. Proc. of Interspeech, 611–615.

[7] Baumann, S., Winter, B. 2018. What makes a word
prominent? Predicting untrained German listeners’
perceptual judgements. J. Phon 70, 20–38.

[8] Linke, J., Kelterer, A., Dabrowski, M. A., Zarka,
D. E., Schuppler, B. 2020. Towards automatic an-
notation of prosodic prominence levels in Austrian
German. Proc. Speech Prosody 2020, 1000–1004.

[9] Johnson, K. 2004. Massive reduction in conver-
sational American English. Proc. in Spontaneous
speech: Data and analysis. Proc. of the 1st session
of the 10th international symposium, 29–54.

[10] Ludusan, B., Schuppler, B. 2022. An analysis of
prosodic boundaries across speaking styles in two
varieties of German. Speech Communication 141,
93–106.

[11] Klabbers, E., Veldhuis, R. 2001. Reducing audi-
ble spectral discontinuities. IEEE Transactions on
Speech and Audio Processing 9, 39–51.

[12] Misra, H., Ikbal, S., Bourlard, H., Hermansky, H.
2004. Spectral entropy based feature for robust
ASR. ICASSP. IEEE, 193–196.

[13] Rogério Scalassara., P., Eugenia Dajer., M., Dias
Maciel., C., Carlos Pereira., J. 2008. Voice signals
characterization through entropy measures. Pro-
ceedings of the First International Conference on
Bio-Inspired Systems and Signal Processing - Vol-
ume 2: BIOSIGNALS, (BIOSTEC 2008). INSTICC
SciTePress, 163–170.

[14] Cohen, A. S., Hong, S. L., Guevara, A. 2010. Un-
derstanding emotional expression using prosodic
analysis of natural speech: Refining the methodol-
ogy. Journal of behavior therapy and experimental
psychiatry 41 2, 150–7.

[15] Schuppler, B., Hagmüller, M., Morales-Cordovilla,
J. A., Pessentheiner, H. 2014. GRASS: The Graz
corpus of Read And Spontaneous Speech. Proc. of
LREC, 1465–1470.

[16] Wasserfall, S. 2020. Automatic Speech Segmenta-

tion using Kaldi. Master’s thesis Technical Univer-
sity Graz.

[17] Schuppler, B., Hagmüller, M., Zahrer, A. 2017. A
corpus of read and conversational Austrian Ger-
man. Speech Communication 94C, 62–74.

[18] Schmitt, B. J. B. 2018. AMFM
decompy documentation 1.0.8.
https://bjbschmitt.github.io/AMFM_decompy/.

[19] Zahorian, S., Hu, H. 2008. A spectral/temporal
method for robust fundamental frequency tracking.
The Journal of the Acoustical Society of America
123, 4559–71.

[20] Cover, T. M., Thomas, J. A. 2006. Elements of
Information Theory 2nd Edition. Wiley Series in
Telecommunications and Signal Processing.

[21] Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E. 2011. Scikit-learn: Ma-
chine learning in Python. Journal of Machine
Learning Research 12, 2825–2830.

16. Speech Technology ID: 298

3105


