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ABSTRACT 

There is often a substantial mismatch 
between the synthetic voices used on augmentative 
and alternative communication devices, and the child 
user’s natural voice in relation to age, gender, dialect, 
and language. This study aims to determine if it is 
possible to develop realistic child speech synthesis, 
using Tacotron 2, for South African English. Two 
hours of child speech data were manually collected 
from one 11-year-old male child. Following this, two 
existing adult models were used to “warm start” the 
child speech synthesis. Despite the limited child 
speech data, we were able to successfully create a 
synthesised child voice of adequate quality. When a 
warm start training procedure is utilised, even when 
there is an age and dialect mismatch, the amount of 
training time decreases, and the synthesised voice 
matches the vocal quality of the child donor’s voice.  
 
Keywords: augmentative and alternative 
communication (AAC), children, speech synthesis, 
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1. INTRODUCTION 

Children with complex communication needs do not 
develop their speech, language, and/or 
communication skills in a typical pattern, most often 
as a result of: a) neurological disorders (e.g., 
intellectual disability), b) genetic disorders (e.g.,  
Down syndrome), or c) structural abnormalities (e.g., 
cleft palate) [1]. When natural speech is restricted, 
augmentative and alternative communication (AAC) 
can assist individuals with complex communication 
needs establish functional communication skills. 
AAC includes techniques, strategies, and pictorial or 
written symbols. Using either low- or high-tech AAC 
options, it can be used to supplement or if needed, 
replace an individual’s natural speech [2]. Low-tech 
AAC is made up of basic communication devices 
(which are often paper-based) whilst high-tech AAC 
involves speech-generating devices such as: mobile, 
computer, and/or tablet-based technologies [2]. Due 
to advancements in technology, high-tech AAC has 
improved considerably in recent years. There are 

many commercially available speech-generating 
devices and mobile applications for children. 
However, the speech output on these devices does not 
always match the age, gender, personality [3], dialect, 
and language of the child user [4]. Tönsing et al. [4] 
state that speech-generating devices in South Africa 
are usually provided in English dialects that are not 
necessarily reflective of South African English 
children’s speech. As AAC research and the 
technology developments are frequently conducted in 
high-income, mostly English-speaking countries, it is 
not surprising that US-accented English, is most often 
incorporated in commonly used speech-generating 
devices [4], [5]. It is not unusual to walk into a South 
African special needs classroom and see all the 
children making use of the same adult US-English 
voice. These children may have a way to 
communicate, but with a voice that doesn’t reflect 
their linguistic and cultural diversity. Although an 
individual’s right to communicate is often discussed 
in AAC research, the rights of individuals using AAC 
to communicate in whichever dialect or language they 
choose, has not received equal attention [4]. Thus, 
this study aims to determine if it is possible to develop 
realistic child speech synthesis, using Tacotron 2, for 
South African English (SAE).  

Although South Africa’s official language policy 
allows schools to select any of the 11 official 
languages for teaching and learning, English in 
education, rather than one of the African languages, 
is often favoured by the community [6]. 
Unfortunately, this means that children using a 
speech-generating device at school are likely using 
their second or third language to communicate [4]. 
Despite the obvious language barrier, these children 
also have to use synthetic voices that do not 
necessarily match their age, gender, or dialect. 
Although this is an established problem, personalised 
synthetic speech software is not without cost [3], [7]. 
Until AAC applications meet the communication 
needs of the child user, AAC use will likely remain 
limited, resulting in fewer opportunities for 
participation and interaction. Despite this, producing 
realistic synthetic child speech from text is 
challenging and this is largely due to the scarcity of 
usable child speech corpora. Further challenges are 

16. Speech Technology ID: 293

3096



experienced when collecting child speech data [8]. 
For instance, in comparison to adult speech, 
children’s read speech is typically less fluent, their 
speech often includes multiple articulatory errors and 
as the recordings are usually conducted in schools 
rather than sound-attenuated booths, background 
noise is common [8]. When speech data is however 
available, Tacotron 2 [9], an open-source speech 
synthesis system, can produce natural synthetic 
speech, with high similarity to human speakers [10]. 
Tacotron 2 is an end-to-end neural network-based 
text-to-speech system that can be trained on text-to-
audio pairs, without phonetic annotation. The system 
is also user-friendly, which means that it can be used 
by individuals with limited text-to-speech experience. 
Additionally, as Tacotron 2 allows for rich 
conditioning of attributes, such as speaker and 
language, data adaptation is possible [9]. 

2. METHOD 

One 11-year-old typically developing male child was 
recruited to record a total of two hours of read speech 
in SAE. Each recording session was thirty minutes 
long, with breaks every 10-15min. Using a Zoom H1 
Handy recorder (44100 Hz), the recordings were 
collected in a repurposed classroom. The data were 
manually marked up into short utterance chunks of 
≤13 seconds, using a Praat textgrid [11]. If audio files 
are ≤13 seconds, Tacotron 2 trains relatively quickly. 
Fluent speech was required, so all false starts, 
disfluencies and misarticulations were removed. 
After data cleaning, there was 113.7min of speech 
that remained. The sound files were extracted from 
the textgrids, changed to mono, and downsampled to 
22050 Hz. The data were then randomly divided into 
training (90%) and validation files (10%). 

The default Tacotron 2 [9] architecture was used to 
create the child speech synthesis. Tacotron 2 [9] is 
made up of a recurrent sequence-to-sequence feature 
prediction network that maps character embeddings 
to mel-scale spectrograms. A “warm start” training 
procedure was implemented, meaning that the child 
speech data was trained over a pre-existing model. 
Essentially, the learned voice from the pre-existing 
model is removed, while the linguistic characteristics 
of that voice remain intact. Therefore, as linguistic 
characteristics from the pre-existing model can be 
transferred to other speakers, the new model’s time 
until convergence is reduced, which makes it 
particularly useful when data is limited. In the current 
study, two differing warm start models were 
compared. In warm start A, the published pre-trained 
Tacotron 2 model (tacotron2_statedict.pt) from 
NVIDIA, trained on the LJ dataset [12] was used. The 
LJ dataset consists of short recordings from one 

female adult North American English speaker. In 
total, the LJ dataset is approximately 24 hours long 
[12]. For warm start B, the child model was trained 
on the cleaned, resampled (22050 Hz) SAE Lwazi III  
text-to-speech dataset [13]. The Lwazi III dataset is 
made up of short and long audio clips from one 
female adult SAE speaker. Although the SAE dataset 
contains mostly SAE, there are also small amounts of 
additional language data. This provides phone 
coverage of other languages [13]. Specifically, it 
contained 6.5 hours of SAE, but also contained 
Afrikaans (2 min), isiZulu (10 min), isiXhosa (12 
min), Sepedi (5 min) and Setswana (4 min) data.   

Figure 1 illustrates the process used to generate the 
synthesis systems for the SAE child speech. As an 
adult SAE text-to-speech model for Tacotron 2 isn’t 
available for download, this first had to be created. 
During training, the full Lwazi III dataset, including 
the additional language data, was used. It was 
theorised that the additional phone coverage may 
improve the pronunciation of non-English names, 
surnames, street and building names. Additionally, 
due to the frequency of loan words between 
languages, it was suspected that improved 
pronunciation may be achieved if additional language 
data were included. Due to the comparably restricted 
Lwazi III dataset, a warm start was implemented 
using the pre-existing Tacotron 2 model from 
NVIDIA. After manually cleaning the adult data and 
segmenting longer recordings, training took 
approximately 5 days. Following the creation of the 
SAE adult synthesis, the respective SAE adult model 
was used to warm start the SAE child speech 
synthesis. Using the generated mel-scale 
spectrograms, the published WaveGlow [14] model 
was then used as a vocoder to synthesise time-domain 
waveforms. WaveGlow is a flow-based generative 
speech synthesis program [14]. 

 

 
 

 
 

 
Figure 1: Process used for generating the synthesis 

systems for SAE child speech. 

A further denoising step was included using a 
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unwanted artefacts. In the end, naturalistic speech 
was created through a combination of Tacotron’s 
prosody and WaveGlow’s audio quality.  

3. RESULTS 

Encouragingly, despite the limited child speech data, 
we were able to successfully create a synthesised 
child voice of adequate quality in SAE. No matter 
which model was used to warm start the child 
synthesis, it took approximately 72 hours. It should 
be noted that the synthesised SAE adult voice was 
considerably less noisy than the two synthesised SAE 
child voices, but the additional language data used in 
the adult synthesis did not improve the pronunciation 
of non-English names and loan words to a great 
degree. Moreover, using a 5-point Likert Scale, where 
0 was completely unnatural and 4 was completely 
natural, a mean opinion score method was used to 
gather 111 SAE listeners’ (1998 responses) 
perceptions of the naturalness of the synthetic voices 
created. Results show that the adult speech (x̄=3.38) 
was judged as more natural than the child speech 
(x̄=2.20). Child synthesis model 2/warm start B 
(x̄=2.33) was judged as more natural than model 
1/warm start A (x̄=2.06). The accent and vocal 
characteristics are comparable to the South African 
child donor, rather than the adult voice, no matter the 
adult model used. Figure 2 shows a spectrographic 
comparison between the donor child’s speech and the 
speech output from the two SAE child models.  

Figure 2: Spectrogram comparison between the SAE 
donor child and the synthesised child audio. 

Alternatively, Figure 3 shows the mel-spectrograms 
and alignment plots for the two child models. The 
alignment plot is a useful tool to visualise a model’s 
success. A straight diagonal line from the bottom left 
to the top right is a good indicator that the model is 
producing something speech-like. The pacing is 
largely consistent, but there are occasional arbitrary 

pauses. The results also show that Tacotron 2 trains 
well with punctuation. E.g., a pause in speech due to 
a comma, is highlighted in Figure 2, and circled in 
Figure 3. However, warm start A produced some 
irregularities. E.g., the word class has a tin-like voice 
quality (arrow).  

Figure 3: Comparison of the Tacotron 2 mel-spectrogram 
(a) and alignment (b) plots of the SAE synthesised child 

speech. 
Model consistency was also considered. Figure 4 
shows alignment plots between the two SAE child 
models (warm start A vs warm start B), when three 
sentences of differing lengths are synthesised.  
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Figure 4: Alignment plots comparing the consistency of 
the two SAE synthesised child speech models. 
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It appears that the SAE child model is more consistent 
when warm start B is used, no matter the length of the 
sentence. In Figure 4, sentence 1 is long, “Every day 
she woke up with a big smile on her face, because she 
loved her job.” Sentence 2 is medium length, “They 
covered their mouths with their hands.” Sentence 3 is 
short, “I like dogs.” The voices are mostly clear, but 
longer sentences produce better quality synthesis, as 
opposed to single-word or short sentences. Similarly 
to findings from Jain et al. [15], the first and last 
words in the phrases were more likely subject to 
distortions and artefacts, as compared to the middle 
of the phrase. The speaker’s ‘breathing’ remained in 
the training data, which transferred to the synthetic 
models, making them appear more realistic.  

4. DISCUSSION 

Despite the occasional pronunciation and prosodic 
irregularity, adequate quality child speech synthesis 
was created with limited data. Both synthesised 
voices appear to sound like a relatively fluent South 
African child. Although the voices have minor 
distortions and some noise, the voices appear natural. 
As typically developing children are often hesitant 
when starting a phrase and may wander towards the 
end, it is unsurprising that these characteristics 
occasionally manifested in the synthetic model [15]. 
In fact, these characteristics likely contribute to 
greater naturalism as a typical child’s speech patterns 
are less fluent, with variations in volume, pacing and 
emotional expressivity [15].  

Firstly, it is effective to use a pre-trained North 
American English model to warm start a model in 
another English dialect. Secondly, using a warm start 
can greatly reduce the model’s training time. This was 
observed when creating the SAE adult speech 
synthesis, and is in line with previous research [16], 
[17]. A warm start, using the Tacotron 2 model was 
utilised to create the SAE adult voice. The final SAE 
adult model (warm start B) was then utilised to warm 
start the SAE child synthesis. It was anticipated that 
including a warm start procedure twice, may result in 
the child model underperforming. Interestingly, the 
child model performed better with warm start B, 
suggesting that more than one warm start does not 
necessarily affect performance. Rather, the child 
model performance is directly proportional to the 
quality and the quantity of the adaptation data used. 
This is also true for the child speech data. In 
comparison, the adult model produced better 
synthesis quality, due to the data used. Although this 
study showed that only 113min of child data is 
sufficient, it is anticipated that if the donor child’s 
speech were to be recorded in a sound-attenuated 

room, for an extended period, one would get 
improved child speech synthesis results.  

Thirdly, the length of the text affects the speech 
output. Practically, this may affect the intelligibility 
of speech output on AAC devices. Drager [18] 
suggests that the context and length of the utterance 
play a role in the intelligibility of synthesised speech. 
Shorter sentences and single-word utterances are 
often less intelligible to the listener. Unfortunately, 
using a single-word AAC device is very common for 
new AAC users, and communication partners may 
find it difficult to understand the synthesised speech 
output, unless context is given. Fourthly, it is easier 
to find a high-quality adult corpus. This study has 
shown that by adapting adult data, using a warm start, 
one can successfully create a child voice that matches 
the vocal characteristics of the child donor. Thus, 
when there are limited training data, which often 
occurs with child speech data, along with possible 
computational resource constraints, incorporating a 
warm start, with an established model of high quality, 
can improve the quality of the synthesised child 
speech output. Although both warm start methods 
produced adequate quality child speech synthesis, if 
one were to use the voices for AAC purposes, it 
would be sensible to a choose a model with a 
consistent speech output. The fact that a warm start 
can be used when training data is limited, is beneficial 
for individuals who have complex communication 
needs. In the future, clinicians will be able to either 
collect the child’s residual speech and incorporate it 
into the training model, or if speech is severely 
impaired, they will be able to use an age-matched 
typically developing child’s voice. As Tacotron 2 [9] 
is open-source and produces naturalistic synthetic 
speech, the lack of extensive speech data should no 
longer limit the development of appropriate child 
voices. This technology can support marginalised 
AAC communities and develop much-needed 
resources in under-resourced languages.  

Using adult adaptation data (warm start) to create a 
child voice is a viable method and could open the door 
for children with complex communication needs to 
have linguistically and culturally appropriate 
synthetic voices. As we successfully created a SAE 
child voice, future research should focus on creating 
child voices in other South African languages. It 
would also be interesting to determine if the residual 
speech of children with complex communication 
needs could be incorporated, so that the voice is a 
closer approximation to the child’s natural voice [3]. 
Lastly, having children with complex communication 
needs select which voice they would prefer to use 
(i.e., an adult, a child, or a child voice that includes 
some of their own speech) is of interest to the authors.  
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