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ABSTRACT 
Listener-oriented hyperarticulated clear speech 
improves word recognition in noise and auditory 
memory. Using visual-world eye-tracking, this study 
examined whether clear speech benefits spoken word 
segmentation and how its effect develops over time. 
English-speaking listeners heard clear and 
conversational sentences in which the target word 
(e.g., ham) was temporarily ambiguous with a 
competitor (e.g., hamster) across a word boundary 
(e.g., she saw the ham starting…). Analysis of the 
listeners’ eye fixations indicated that the likelihood of 
fixating the picture of the target compared to that of 
the competitor was higher for clear speech than 
conversational speech. The difference emerged even 
before segmental information for resolving the 
ambiguity was available in clear speech. The findings 
showed that speaking clearly facilitated listeners’ 
discovery of word boundaries. Improved speech 
segmentation and reduced lexical competition may in 
part underlie the clear speech processing benefits. 
 
Keywords: Clear speech, speech segmentation, 
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1. INTRODUCTION 

Words in fluent speech are not consistently separated 
by pauses [1]. To successfully recognize words and 
comprehend the spoken message, the listener needs to 
find the word boundaries or to achieve speech 
segmentation. This study aims to provide further 
insight into such an ability by examining how 
intelligibility-enhancing hyperarticulated speaking 
styles affect the listener’s speech segmentation. 

Past research has revealed a wide variety of signal-
dependent and -independent cues used during 
segmentation (see [2] for a review). The phrase night 
rates can be distinguished from nitrates based on 
allophonic differences [3]. Stressed syllables [4], [5] 
and vowel lengthening [6], [7] are used to locate 
word-initial and -final positions, respectively. Signal-
independent lexical cues, such as knowing that 
anything is a word, allows listeners to detect the 
fragment corri more rapidly in anythingcorri than in 
imoshingcorri [8]. Speech does not even have to be 
meaningful to be segmented. Exposed to nonsense 
syllable sequences repeated continuously, listeners 

can still extract the sequences by tracking syllable co-
occurrence frequencies [6], [9]. 

While these findings improve the understanding of 
what cues are useful for identifying word boundaries, 
speech segmentation is rarely explored in connection 
with phonetic variation in real-word communication 
(cf. [10]). In daily interactions, speakers dynamically 
adjust their output along a hypo-hyperspeech 
continuum, reflecting a balance between speaker- and 
listener-oriented forces (H&H theory: [11]). Under 
challenging listening conditions (e.g., noisy 
environment or non-native listener), they produce 
intelligibility-enhancing hyperarticulated “clear 
speech” [12]. Relative to casual or conversational 
speech, clear speech shows various acoustic-phonetic 
enhancements (e.g., longer segment duration, vowel 
space expansion) and benefits perceptual processes 
including word recognition and auditory memory (for 
reviews, see [13], [14]). 

Recent work has begun to explore these perceptual 
benefits in finer detail by examining how clear speech 
impacts listeners’ segmentation. In [15]’s artificial 
language learning study, English listeners heard 
speech streams containing continuous repetitions of 
nonsense words and were tasked with segmenting the 
words based on the statistical patterns of the words’ 
component syllables. Results showed that in quiet, 
their segmentation was more accurate with the speech 
streams produced clearly than with those produced 
conversationally. These findings suggest that the 
well-established clear speech benefits for word 
recognition may partly be aided by improved 
segmentation. Yet, unlike the participants in [15], 
listeners in real-world communication rarely parse 
nonsense speech. It remains unclear the extent to 
which speaking clearly improves segmentation of 
meaningful words as the speech signal unfolds. 

We addressed this issue in a visual-world eye-
tracking experiment [16]. Unlike traditional 
behavioral tasks (e.g., word-spotting [17]), eye-
tracking provides rich temporal information of how 
the evolving speech is integrated to locate word 
boundaries. In our experiment, listeners heard 
“lexical garden-path” sentences [18], [19] such as She 
saw the ham starting to get crispy and brown, in 
which the string ham st- overlaps with the unintended 
hamster. Models of spoken word recognition (e.g., 
[20], [21]) assume that both ham and hamster are 
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activated and compete for lexical selection until the 
signal mismatches hamster at the “disambiguation 
point (DP)” (e.g., onset of /ɑ/ in starting in the above 
sentence). The question of interest concerns whether 
clear speech provides more word boundary robust 
cues to allow listeners to consider ham over hamster 
and at what point in the evolving speech signal this 
benefit occurs. To explore this, we tracked English 
listeners’ gaze at related images as they listened to the 
sentences produced clearly and conversationally.  

2. EYE-TRACKING EXPERIMENT 

2.1. Hypothesis 

Based on [15]’s findings, it was hypothesized that 
relative to conversational speech, clear speech 
similarly aids segmentation of meaningful words 
such that listeners can locate the word boundary more 
effectively even before the DP is reached. If this was 
the case, we expected that within the analysis time 
window (see Section 2.5), the likelihood of fixating 
the image of the target (e.g., ham) as compared with 
that of fixating the competitor image (e.g., hamster) 
would be significantly higher for clear speech than for 
conversational speech. 

2.2. Stimuli 

Critical items were twenty-six pairs of picturable 
English nouns, each containing a monosyllabic target 
word (e.g., ham) and a disyllabic, initially stressed 
competitor in which the target was embedded as onset 
(e.g., hamster). The log frequencies per million words 
of the targets (mean: 2.76) and competitors (mean: 
2.06) were matched as closely as possible using the 
CLEARPOND database [22] to minimize frequency 
effects [23]. For each pair, a target-bearing sentence 
was constructed such that the target plus the onset of 
the next word overlapped partially with the 
competitor (e.g., She saw the ham starting to get 
crispy and brown). Two additional sentences were 
created for each pair: one in which the intended word 
was the competitor (e.g., She saw the hamster 
running quickly on the wheel) and the other in which 
it was a mono- or di-syllabic distractor word 
semantically and phonologically unrelated to the 
target and competitor (e.g., He wanted to find the 
turkey under the tree). The sentences began in a way 
that would not bias towards either the target, 
competitor, or distractor. Seventy-eight unique 
sentences (26 target-competitor pairs × three sentence 
types) were constructed. 

A female native speaker of American English 
produced the sentences first conversationally and 
then clearly. For the conversational style, she was 
instructed to speak “as if to a friend or someone 

familiar with her voice.” For the clear style, she was 
instructed to speak “as if to someone hard-of-hearing 
or a non-native speaker.” The instructions have been 
shown to be successful in eliciting the style 
distinctions [14], [24], as confirmed by a preliminary 
acoustic analysis showing that, for example, 
segments in clear speech were longer. The 156 
sentence stimuli (78 sentences × two styles) were 
recorded using a Shure SM10A head-mounted 
microphone at a 44.1k Hz sampling rate as WAV files. 

The stimuli were each paired with a display 
containing four drawings in the quadrants to form 156 
trials. The drawings depicted the target, competitor, a 
monosyllabic distractor, and a disyllabic distractor, as 
shown in Fig. 1. In the critical trials, the drawing of 
the target was mentioned in the sentence while in the 
filler trials, the mentioned drawing was the 
competitor or one of the distractors. Drawings of each 
type appeared in each quadrant roughly equally often. 
They were taken mostly from normed drawing 
databases (e.g., [25]) and edited to ensure consistent 
visual features when necessary. 
 

 
Figure 1: Sample visual arrays of the three trial types 

 
The trials were distributed over two lists of 78 

trials such that participants were presented with clear 
and conversational speech but never with the same 
sentence in both styles. Each list was divided into 
three blocks, with block order and trial order within a 
block randomized. Trials of the three types in Fig. 1 
and of the two speech styles occurred (approximately) 
an equal number of times. 

2.3. Procedure 

Participants were first familiarized with the drawings 
and their labels. They were then seated about 60 cm 
from a computer screen with their heads on a chin rest 
and assigned to either list. Each trial began with a 
fixation cross that served as a drift check. When 
fixated, the cross was displaced by four drawings and 
three seconds later, a sentence was played in quiet via 
headphones. Participants clicked the drawing 
mentioned in the sentence as quickly and accurately 
as possible. They completed five trials with feedback 
as practice before the experiment proper. Their right 
eyes were tracked at 500 Hz with an EyeLink Portable 
Duo (SR research) eye-tracker, calibrated with a 

She saw the ham starting 
to get crispy and brown.

She saw the hamster 
running a wheel

He wanted to find the 
turkey under the tree.

(a) Critical (b) Filler
(competitor was mentioned)

(c) Filler
(distractor was mentioned)
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standard nine-point grid before the practice and each 
block and when recalibration was needed. The 
experiment was run using Experiment Builder. 

2.4. Participants 

Forty-eight native American English speakers 
participated in the study (29 females; age range: 16-
29, mean age: 19.1). All passed a pure-tone screening 
binaurally at 25 dB HL for 1000, 2000, and 4000 Hz. 
None reported hearing, speech, or vision disorders. 
Nine participants were excluded for calibration 
failure, not fixating any image in almost all trials, or 
having response accuracy 2.5 standard deviations 
below the mean for at least one speaking style. 

2.5. Data analysis 

We tested the hypothesis by comparing proportions 
of fixations to target versus competitor images in the 
critical trials within a selected analysis time window. 
This window began 200 ms after target word onset as 
it takes about 200 ms to launch a saccade [26]. The 
end point of the window was sentence-specific but the 
same for the clear and conversational versions of each 
sentence—it was the DP of the clear stimulus. This 
was done as the durations from target onset to the DP 
in conversational stimuli (mean: 259 ms) could be too 
short to provide meaningful data when the initial 200 
ms was excluded. Thus, since conversational speech 
was faster, the analysis window included some post-
DP segments for the conversational counterpart of 
each clear stimulus. Such a window provided a 
stringent and realistic test of the hypothesis: clear 
speech prior to the DP may contain more robust word 
boundary cues than conversational speech with post-
DP information for ruling out the competitor. 

The analysis window of each sentence was 
divided equally into 10 time bins. Within each bin, 
proportions of fixations were calculated separately 
for the target and competitor images and transformed 
into empirical logits [27]. With this we derived from 
each trial two empirical-logit curves representing 
fixation likelihoods over normalized time—one for 
the target and the other for the competitor. 

3. RESULTS 

The valid participants (N = 39) clicked with >92% 
mean accuracy across trial types and styles. Fixations 
were coded by the eye-tracker’s default algorithm as 
directed to one (or none) of the images on the display 
and those in the critical trials with correct responses 
were analyzed as in Section 2.5. Fig. 2 shows the 
mean empirical logits over the 10 time bins within the 
analysis window by image type and speaking style. 
 

 
Figure 2: Mean empirical logit at each time bin within the 
analysis window for fixation data in correct critical trials 

by speaking style and image type. 
 

Inspecting Fig. 2 revealed that the empirical-logit 
curve representing the likelihood of target fixations 
diverged from the curve for competitor fixations to a 
larger extent for clear speech than for conversational 
speech. To test the statistical significance of the 
pattern, we analyzed the curves using generalized 
additive mixed modeling (GAMM: [28]) 
implemented in the mgcv [29] package of R [30]. 
Following [31], we modelled the time-varying effects 
of image type and style and their interaction with 
smooth functions for three binary predictors: IsTarget 
(coded as 1 for the curves of the target image and 0 
for those of the competitor), IsClear (coded as 1 for 
the curves of clear speech and 0 for those of 
conversational speech), and IsTargetClear (coded as 
1 for the curves of the target in the clear condition; 
otherwise, 0). Of interest was the smooth of 
IsTargetClear, for which positive estimates indicated 
that target fixation proportions compared with 
competitor fixation proportions were relatively 
higher for clear speech than for conversational speech. 
By-participant and by-sentence factor smooths for the 
three predictors were included as random effects. 
Autocorrelated residuals were corrected using an 
AR(1) error model with ρ = 0.823. 

All smooth terms were significant (p < .001). As 
these terms were not immediately interpretable, the 
hypothesis was tested by visualizing the smooth of 
IsTargetClear over time normalized between 0 and 1. 
As Fig. 3 shows, its effect was positive and significant 
from 0.576 to the end. That is, starting around 
halfway of the analysis window, the difference of the 
target from the competitor in fixation proportions 
began to be significantly larger for clear speech than 
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conversational speech. This result was consistent with 
the hypothesized clear speech segmentation benefit.  
 

 
Figure 3: Estimated effect of IsTargetClear over 
normalized time. The dashed lines mark the 95% 

confidence interval. The time interval during which the 
effect was significant is shaded. 

4. DISCUSSION 

Using visual-world eye-tracking, we examined 
whether clear speech facilitates word segmentation 
relative to conversational speech. English-speaking 
listeners heard clear and conversational sentences 
with temporary ambiguity between the target and a 
competitor across a word boundary. Analyzing their 
eye fixation patterns revealed that the proportions of 
target fixations as compared with those of competitor 
fixations were significantly higher for clear speech 
than conversational speech at 0.576 into the analysis 
time window. This suggested that clear speech led 
listeners to locate the word boundary more effectively 
and consider the intended target word more. Thus, 
speaking clearly improves not only segmentation of 
nonsense speech streams as found in [15] but also 
segmentation of meaningful words during real-time 
speech processing. Improved word segmentation may 
in part underlie the clear speech benefits for linguistic 
and cognitive processes, including word recognition 
and auditory memory [13], [14]. 

The findings cannot be attributed to poor 
intelligibility of conversational speech. This 
possibility is discounted by a further analysis 
comparing fixations to the two related images (i.e., 
target and competitor) versus the unrelated distractor 
images across the two styles. The results showed that 
throughout the analysis window, the target and 
competitor on the one hand were distinguished from 
the distractors on the other equally well for both styles. 
This means that the listeners could accurately 
perceive the critical segments (e.g., ham st-) and 
reject the distractors in conversational speech. The 
conversational stimuli were just more ambiguous 
between the target and competitor than the clear ones, 
resulting in the patterns in Fig. 2. 

The current evidence for the clear speech 
segmentation benefit is noteworthy considering the 
time window selected for the analysis. As mentioned, 
the window ended at the DP for the clear sentence 

stimuli but included some segments after the DP for 
their conversational counterparts. Word recognition 
models (e.g., [20], [21]) would posit that during the 
time window, conversational speech should 
disambiguate the target from the competitor more 
than clear speech as post-DP segments mismatching 
the competitor are available. The results, however, 
suggested the opposite. As our acoustic analysis 
found segmental and prosodic enhancements (e.g., 
longer duration, greater F0 range, etc.) in clear speech, 
boundary cues like stress [5] and vowel lengthening 
[19] might also be exaggerated. These enhanced cues 
then jointly promote activation of the target while 
reducing competition from unintended competitors—
an effect not captured by the lexical competition 
dynamics assumed in the word recognition models. A 
pressing goal would be to examine the extent to which 
each boundary cue contributes to segmentation when 
enhanced through clear speech modifications. 

Our findings further suggest that the relative 
importance of signal-dependent and signal-
independent segmentation cues may be altered under 
hyperarticulation. It has been proposed that at least in 
optimal listening conditions, lexical and semantic 
cues generally outweigh signal-dependent acoustic-
phonetic and prosodic cues [10], [32], [33]. Yet, this 
view is based on experimentation with a single cue 
from each cue type without consideration of 
hyperarticulated clear speech. The advantage of clear 
speech over conversational speech with segmental 
information for ruling out the competitor implies that 
listeners may put more weight on the signal-
dependent cues enhanced through hyperarticulation, 
potentially outranking lexico-semantic information. 
Future work is needed to examine how the clear 
speech benefit changes in the presence of, for 
example, semantic context to the target word. 

Another further question is to examine the extent 
to which clear speech facilitates word segmentation 
in adverse conditions, such as environmental noise. 
Since noise increases lexical competition from 
competitor words [34], it is of interest to examine 
whether the clear speech segmentation benefit will be 
reduced or delayed in noise as a result. Another issue 
concerns whether clear speech also aids segmentation 
for other listener populations such as non-native or 
hard-of-hearing listeners. The findings would add to 
the understanding of the mechanism underlying the 
clear speech intelligibility benefit in realistic 
communicative contexts. 
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