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ABSTRACT 

 

Intuitively, speech production can be learned by 

imitating proficient speakers in language acquisition. 

But a recent computational simulation has shown that 

learning to produce English words can be achieved 

under the guidance of speech perception, without 

direct mimicry. In this study, we tested whether 

similar perception-guided learning also applies to 

Mandarin tone acquisition. We used PENTAtrainer, a 

pitch modelling tool to simulate learners’ tone 

articulation, and a trained tone recognizer to simulate 

tone perception. Three learning methods with 

different optimization objectives were tested: 1) 

closeness of fit of f0 contours, 2) tone recognition by 

an automatic tone recognizer, and 3) tone recognition 

plus minimization of mean f0 difference at the initial 

learning phase. The results show that method 3 

achieved the best learning outcome as evaluated by 

the tone recognizer and human listeners. Perception-

guided tone learning is therefore shown to be 

effective if learners’ exploration range can be reduced 

first. 
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1. INTRODUCTION 

It is still unclear how children acquire language 

spontaneously without explicit adult instructions. A 

popular idea is that they do it through imitation [16, 

23, 24]. However, it has been difficult to 
computationally simulate such imitative learning [11, 

20, 21, 25]. And a major source of difficulty has been 

the speaker normalization [13] or correspondence [5] 

problem. For example, because children’s vocal tracts 

are much shorter than adults’ [10, 27], their formants 

are much higher and more dispersed, making it 

difficult for children to directly imitate adult speech. 

However, recently it has been demonstrated 

computationally that this correspondence problem 

can be largely solved by using speech perception as a 

guide in production learning [15, 26, 34]. The 

production of simple English words with high 

intelligibility can be learned this way without directly 

imitating any specific utterances.  

The effectiveness of simulating perception-guided 

vocal learning raises the question of whether tone 

learning can be simulated in a similar way. 

Theoretically, this is conceivable, and in fact should 

be easier since tones mainly involve a single acoustic 

dimension, i.e., fundamental frequency (f0), and tones 

have been successfully modelled with PENTAtrainer, 

a Praat-based prosody modelling tool [31]. However, 

perception-guided learning with only a single 

acoustic dimension could also present problems due 

to the lack of cross-reference to other parameters.  

This study is a preliminary test of perception-

guided tone learning. But a strategy slightly different 

from [15, 26, 24] is applied. First, the acoustic 

imitation was simulated by an algorithm that 

optimized the matching of f0 contours across a whole 

corpus consisting of many utterances produced by 

multiple speakers (including both males and females). 

Second, data from the same corpus were used to 

assess the learning outcome of both imitative and 

perception-guided learning, thus minimizing 

confounding in comparison. 

2. METHOD 

2.1. Corpus 

The Xu1999 corpus used in this project was originally 

recorded for an experimental study of tone and focus 

in Mandarin [28], which consisted of utterances 

produced by four female and four male speakers. The 

utterances were five-syllable sentences composed of 

three words (two disyllabic and one monosyllabic), as 

shown in Table 1. As can be seen, the second, third 

and fourth syllables have varying tones, while the 

tone of the first and last syllable is always H. The 

speech was fluent, with a speech rate of roughly five 
syllables/s. 

 
Table 1: Tone patterns and corresponding 

sentences used as recording material. H, R, L, and 

F represent high, rising, low, and falling tones, 

respectively [28]. 

The sentences in the full corpus also varied in focus 

conditions: initial, medial, final and no focus [28]. 

The present study only used the neutral focus 

sentences, however, to simulate tone learning only. 
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The corpus was divided into a training set consisting 

of 6 of the 8 speakers, 3 males and 3 females, and a 

testing set consisting of 2 speakers (1 male, 1 female). 

2.2. Modelling tool 

The computational tool was a special-purpose version 

of PENTAtrainer [31] — an interactive Praat [3] 

script for modelling speech prosody. PENTAtrainer 

models tone and intonation by combining built-in 

articulatory dynamics (target approximation) [22, 

33], parallel encoding [29], and global stochastic 

learning (simulated annealing [14]) [31]. The original 

version has been shown to generate intelligible and 

natural-sounding tone and intonation by optimizing f0 

contour fitting [31]. The f0 fitting can be viewed as a 

form of learning by imitation, as it tried to maximize 

the similarity between the learned and the original f0 

contours.   

The special-purpose version of PENTAtrainer 

used in this study included two additional learning 

methods, learning by optimizing tone recognition, 

and learning by optimizing tone recognition and 
minimizing mean f0 difference (deltaf0). The 

computationally intensive learning task was run by a 

Python executable called by the Praat script. The tone 

recognizer, also called by the Praat script, was a 

support vector machine (SVM) trained by the scikit-

learn package [6] in Python with syllable-sized f0 

contours as input data. The trained model was able to 

recognize both tone and focus with high accuracy [7, 

8]. In learning method 3, deltaf0 was the utterance-

wide mean f0 difference between each original and 

synthetic contour, and it added a fraction of weight to 

the tone recognition error in the coarse-tuning phase 

of the learning:  

(1) e = 0.9 er + 0.1 d 

where er = 10 (1 – recognition rate [0,1]), and d = 

f0orig – f0orig, where f0orig and f0orig were utterance-wide 

mean f0 of original and synthetic tones, respectively. 
The coarse-tuning phase, consisting of the first 

450 of the total 750 training iterations, optimized all 

tonal targets at once in each iteration, while the fine-

tuning phase optimized each parameter (height, slope 

and strength [31]) of each tonal target at a time. 

2.3. Procedure 

The experiment proceeded in 5 steps: 

Step 1. Training the tone recognizer on all the neutral-

focus utterances in the Xu1999 corpus. The 

overall post-training recognition rate was 94.7%. 

Step 2. Running PENTAtrainer in the training set 

with three learning methods, each repeating five 

times. The main simulated annealing parameters 

used were: iteration = 750, learning rate = 0.1, 

starting temperature = 700, and reduction factor 

= 0.98. 

Step 3. Averaging the pitch targets of each tone 

learned from the five runs of each learning method 

to obtain three sets of tone targets.  

Step 4. Running PENTAtrainer in the testing set with 

the mean tone targets to a) generate f0 contours that 

were input to the automatic tone recognizer for 

tone recognition, and b) resynthesize all the 

utterances in the testing set with the model-

generated f0 contours. 

Step 5. Playing the resynthesized utterances to 

listeners for perceptual tone identification and 

judgment of naturalness.  

For step 5, the stimuli contained 320 recordings from 

the testing set, which were divided into four 

conditions: a) original recordings, b) recordings 
resynthesized with parameters learned from f0 fitting, 

c) recordings resynthesized with parameters learned 

from recognition only, and d) recordings resynthesized 

with parameters learned from recognition+deltaf0. The 

tones to be identified belonged to the second syllable, 

which was always /mi/, c.f. Table 1. Syllables in other 

positions carried fewer tones, varied in segmental 

compositions, and were not included in the perception 

test. For the naturalness rating, listeners were asked 

to judge whether they have heard a human utterance 

or a computer-generated sound. 

The listening subjects were 20 native Beijing 

Mandarin speakers, who performed the perception 

tasks on Gorilla, an online experiment platform. They 

had no history of neurological or communication 

disorders, and passed a hearing screening at 20 dB HL 

bilaterally at 125, 250, 500, 750, 1000, 2000, 3000, 

and 4000 Hz.  

3. RESULTS 

3.1. Numerical evaluations 

Table 2: Numerical assessments of tone learning 

separated by learning methods. 

 

Table 2 shows the root mean square error (RMSE), 

Pearson’s correlation coefficient (r) and tone 

recognition rate for the three learning methods. As 

expected, learning by f0 fitting worked well, achieving 

low RMSE and high correlation, consistent with 

previous findings on the same corpus [31]. 

Interestingly, the tone recognition rate, at 0.85, was 

also fairly high, which was consistent with [7]. 

Recognition only showed poor results, with high 

RMSE and low correlation, whereas 

Learning method RMSE Correlation Recog. rate 

F0 fitting 1.64 0.81 85% 

Recog. only 4.12 0.18 66% 

Recog.+deltaf0 2.09 0.72 95% 
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recognition+deltaf0 had the highest recognition rate 

at 95%, although its RMSE was higher and 

correlation was lower than those of f0 fitting. 

Figure 1 shows learning progression in terms of 

mean RMSE and recognition rate. Both indicators 

were recorded during learning with all methods, 

regardless of whether the method itself used them as 

optimization objectives. As can be seen, in all cases, 

RMSE was reduced over the iterations while 

recognition was improved. In all cases, the sudden 

improvement from iteration 450 was due to the shift 

from coarse- to fine-tuning phase of learning, as 

explained in 2.1. 

 

 

 

Figure 1: Examples of learning progression per 

iteration in terms of mean RMSE and recognition 

rate. 

As can be seen, for f0 fitting, RMSE was reduced to a 

very low level in the fine-tuning phase, but the 

increase of tone recognition hovered around 90%. For 

recognition only, both RMSE and recognition failed 

to improve much further in the fine-tuning phase. For 

recognition+deltaf0, RMSE stopped to reduce below 

two semitones, but recognition went quickly above 

95% after the onset of fine-tuning. 

3.2. Human perceptual evaluation 

Figure 2 shows perceptual tone identification rates for 

the four types of stimuli: a) original utterances, b) 

audios resynthesized with parameters learned from f0 

fitting, c) audios resynthesized with parameters 

learned from recognition only, and d) audios 

resynthesized with parameters learned from 

recognition+deltaf0. 

 

Figure 2: Tone recognition rate in four conditions.  

The original utterances achieved the best tone 
recognition rate at 81%, while recognition+deltaf0 

was the second best at 80%. A two-tailed t-test found 

the difference between the two conditions non-

significant. However, neither of these conditions 

performed nearly as well as the overall automatic tone 

recognition rate of 94.7% mentioned in section 2.3. 

One likely reason is that the recognizer performance 

was for tones of all syllables in each sentence. 

Syllables 1 and 5 both always had T1, the high-level 

tone, whose recognition rate was very high, partially 

due to over-training. For the tone of the second 

syllable alone, the recognizer achieved only 90% for 

the testing set, although this is still much higher than 

the 81% of the listener recognition of the original 

tones in Figure 2. Therefore, the superior 

performance of the recognizer is more likely because 

it has been trained on the same corpus, whereas the 

listeners relied on their real-life listening experience, 

which would include many more speakers with 

diverse tone articulations. The recognition rate for f0 

fitting was 76%, which was significantly lower than 

both the original (t(16) = 6.57, p < 0.001) and 

recognition+deltaf0 (t(16) = 4.89, p < 0.001) 

conditions.  

  

  

Figure 3: Heat map of confusion matrices for the 

perception of tones in four conditions.                                                                   
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Confusion matrices of tone perception are shown in 

Figure 3. These confusions can be examined together 

with the mean f0 contours in Figure 4, which are 

separated by tone of the second syllable. First, for 

both T1 and T2, the recognition-only condition 

learned obviously wrong targets, high-fall for T1 and 

high-level for T2. Curiously, at 82% and 89%, the 

perception of these two tones did not seem to be 

severely affected. Second, For T2, the 

recognition+deltaf0 condition generated a contour 

with an extra low minimum f0 and a sharp terminal 

rise. This allowed the tone to be perceived (90%) as 

well as in the original condition (89%). Third, for T4, 

f0 fitting generated a contour with a lower f0 peak than 

both the original and recognition+deltaf0 conditions. 

This is probably why it had a 26% confusion with T3. 

Finally, in the recognition+deltaf0 condition, T3 was 
heard as T2 around 22% of the time. Although this is 

similar to the original condition where confusion with 

T2 was 12%, the f0 contour in the bottom left plot of 

Figure 4 shows that the greater confusion was likely 

due to an earlier rise than the original T3. 

 

 

 

Figure 4: Mean F0 contours, separated by the tone 

of the second syllable, clockwise from the top left: 

T1, T2, T3 and T4. The horizontal axis is 

normalized time (10 points/syllable). The vertical 

axis is f0 in semitones.  

 

Figure 5: Percentage of utterances judged as natural 

speech (rather than synthetic) in the four conditions.  

Figure 5 shows the results of naturalness judgment by 

listeners. As can be seen, even the original utterances 

were judged only 69% as human articulation. 

Interestingly, utterances from the f0 fitting condition 

were judged as more likely to be humanly articulated 

than those from the recognition only (t(16) = 7.55, p 

< 0.001) and recognition+deltaf0  (t(16) = 4.97, p < 

0.001) conditions. 

4. DISCUSSION AND CONCLUSION 

This preliminary simulation study has demonstrated 

that perception-guided vocal learning [15, 26, 34] 

may also work for tone acquisition, provided that the 

target exploration range is constrained in the early 

learning phase, as done in the recognition+deltaf0 

condition. The quality of the learned tones with that 

method was better than those learned with f0 fitting as 

assessed by both automatic tone recognition and 
human tone perception, except in terms of naturalness. 

It is important to note, however, that the f0 fitting 

method in this study was not strictly simulating direct 

mimicry, because it optimized f0 contour match in all 

instances of each tone across all the repetitions by all 

speakers in the training set of the corpus (120 in total). 

But the optimization in recognition+deltaf0 was also 

performed across all the utterances in the training set. 

In other words, the only difference between these two 

methods was the learning objective: to maximize the 

similarity of f0 contours, or to maximize the tone 

recognition accuracy. On the face of it, the 

differences may be hard to comprehend. Why 

wouldn’t achieving maximum acoustic similarity to 

multiple speakers lead to the best learning outcome? 

But the results clearly show an advantage for 

recognition-guided learning. This suggests that the 

difference in learning objectives is not trivial, as it 

may reflect the core nature of speech as a 
communication system. Given this nature, the proper 

objective of vocal learning should be to gain the 

ability to produce maximally intelligible speech 

rather than to just sound like other speakers. And the 

same may also be true of adult speech. That is, what 

makes a contrastive phonetic unit equivalent across 

different speakers is that it has been learned in such a 

way that it is most likely to be perceived as that unit. 

While this may sound circular as a factual definition, 

the circularity would disappear once it is treated as an 

operational definition, as shown in this study. 

It is unclear, however, why recognition guidance 

alone did not work well in this study. Is it indeed due 

to a lack of cross-reference to other parameters as 

speculated in the Introduction? If yes, is it possible to 

introduce some minor adjustments to the current 

learning algorithm? This will need to be addressed in 

future studies. 
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