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ABSTRACT 
 
The effect of 15 normalization procedures on the 
power of statistical tests is assessed. The difference 
in the F0 in Hz between the high and low vowels 
(N=1471), i.e. the intrinsic vowel pitch, produced 
by 47 native speakers of Dutch was assessed by 
means of a t-test. The same test was applied to the 
F0 values normalized by means of 15 conventional 
procedures. The power of the tests was registered to 
assess the effect of the normalization procedures. 
The results show that statistical power is influenced 
by applying normalization, but the difference in 
power of the procedures is levelled out as a function 
of the number of observations. The effects of the 
normalization procedures are interpreted in terms of 
how the variability of the data is accounted for. 
 
Keywords: normalization, methodology, statistics, 
fundamental frequency, intrinsic vowel pitch.  

1. INTRODUCTION 

In addition to linguistically relevant information, 
speech also conveys information about the speaker, 
such as their sociolinguistic and physiological 
characteristics [1]. The latter can be studied for their 
own sake, such as the effect of physiological 
differences on acoustic differences [2]. But in other 
areas of research, those characteristics are 
considered as noise. For instance, in studying F0, 
individual anatomical differences – whether or not 
related to gender differences – are treated as noise 
which researchers typically try to eliminate by 
applying normalization. 

Similarly to the normalization of vowel 
formants, the normalization of F0 consists of (non-) 
linearly rescaling raw frequency values in order to 
level out anatomical differences between speakers. 
Research on normalization techniques have studied 
how well they preserve (sociolinguistic) variation 
while eliminating idiosyncratic physiological noise 
[3], the degree of overlap between normalized 
vowel spaces [4], and their ability to reduce the 
within-vowel category variability while enhancing 
the between-vowel category variability [5]. 

However, the a posteriori rescaling of the 
original frequency measurements in Hz can lead to 
a rescaling of the variability in the data. As such, 
normalization potentially affects hypothesis testing 
and the power of statistical tests, i.e. the probability 
of correctly rejecting the null hypothesis. Research 
in genetics [6] and neurology [7] has revealed the 
impact of normalization procedures on statistical 
power. However, to the best of our knowledge, F0 
normalization has not yet been investigated in this 
respect. 

The main objective of this paper is to study the 
effect of F0 normalization on statistical power. It 
addresses the question whether normalization 
affects the statistical power of statistical tests. For 
this purpose, 15 conventional normalization 
procedures were applied to the same dataset, which 
consisted of F0 measurements of 1471 vowels 
produced by 47 speakers. This corpus was selected 
because it contains all monophthong vowels of 
Dutch produced by many speakers in carefully 
controlled consonantal contexts. The difference in 
F0 between the high and low vowels, i.e. the so-
called “intrinsic vowel pitch”, was then tested on 
both the unnormalized and normalized data. The 
power of each statistical test was computed and 
compared.  

2. EXPERIMENT 

2.1. Participants 

Audio recordings were made of 90 Belgian Dutch 
speaking children imitating Dutch (non-)words. The 
mean chronological age of the children was 6 years 
(min. 5, max. 7). They all attended their first year of 
primary school in their region of birth.  

2.2. Speech materials 

Each child imitated 36 monosyllabic CVC stimuli. 
The vowel nucleus of each stimulus contained one 
of the 12 monophthongs of Belgian Standard Dutch, 
i.e. /i, ʏ, ɪ, ɛ, ɑ, ɔ, u, yː, eː, øː, aː, oː/ [8]. Each vowel 
occurred in three consonantal contexts: (i) /p_t/, (ii) 
/l_t/ and (iii) /t_r/, thus yielding phonotactically 
well-formed (non-)words. 
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The stimuli were read by a trained phonetician 
and the recordings of these were presented aurally 
to the participants who were asked to imitate her 
speech samples. Children's speech was recorded in 
a quiet room on a TASCAM DAT recorder by 
means of a head-mounted MicroMic II. The audio 
files were converted to WAV files by means of a 
TASCAM US 428 Digital Control Surface. The 
recording sessions with the children yielded a total 
of 7,985 speech samples. 

Children’s imitations were perceptually assessed 
by 6 expert listeners who identified all speech 
samples in which the vowels were correct renditions 
of the target vowels. From these, a subset of samples 
was selected according to the following criteria. The 
speech samples containing the corner vowels /i, u, 
a/ were selected from children who had produced 
each corner vowel at least twice and who had 
produced each of the 12 vowels at least once. The 
final data selection consisted of a total of 1,471 
vowels produced by 47 children. For each of those 
47 speakers, one randomly selected vowel per 
vowel category (N=564) was retained because of 
the requirements of some of the normalization 
techniques.  

2.3. Acoustic analysis  

The F0, F1, F2 and F3 of all the vowels were 
measured using a Python script through the 
Parselmouth API [9] of PRAAT [10]. F0 was 
determined using the standard autocorrelation 
algorithm. The maximum number of candidates was 
set to 15, the silence threshold to 0.03, the voicing 
threshold to 0.45, the octave cost to 0.01, the octave-
jump cost to 0.35 and the voiced/unvoiced cost to 
0.14. To minimise the number of potential octave 
jumps, the pitch floor and ceiling were set at 175 Hz 
and 425 Hz respectively after visual inspection of 
the pitch data with PRAAT’s standard parameters. 
PRAAT’s “Kill octave jumps” function was also 
applied. In addition, the F1, F2 and F3 of the vowels 
were measured. The number of formants was set to 
5 and the formant maximum was set to 5500 Hz. 
Formant measurements were needed since one 
normalization technique (as described in [11]) 
requires them as variables. 

2.4. Normalization procedures 

The F0 normalization procedures used in the present 
study are listed in Table 1. The procedures were 
taken from published research on acoustic vowel 
normalization [3, 4, 5, 12] and in research dealing 
specifically with intrinsic vowel pitch [13, 14, 15]. 

Vowel normalization procedures require 
information about different vowels (i.e., vowel-

extrinsic normalization) or only information about 
the vowel to be normalized (i.e., vowel-intrinsic 
normalization) [3]. Four types of F0 normalization 
techniques can be distinguished:  
• rescaling methods transform the physical Hz 

scale to a perceptually relevant scale. Although 
they do not perform proper normalization [16], 
some scholars (e.g. [3, 15]) consider them as 
potential auditory normalization techniques, 
hence they were included in the present study; 

• range normalization procedures normalize each 
vowel with respect to all the vowels of 
individual speakers [12];  

• centroid normalization procedures normalize 
values relatively to a central tendency of the 
total distribution per participant [12];  

• log-mean normalization techniques subtract a 
reference value from the log-transformed Hz 
value [12].  
 

UNNORMALIZED FREQUENCY 

HZ base condition 

SCALE CONVERSION – VOWEL-INTRINSIC 

BARK Bark-conversion of the Hz scale [17] 
MEL Mel-conversion of the Hz scale [18] 
ERB ERB-conversion of the Hz scale [19] 
LN Natural logarithmic conversion of the Hz scale [20] 
ST-1 Semitone-conversion (ref. 1Hz) of the Hz scale [15] 
ST-50 Semitone-conversion (ref. 50Hz) of the Hz scale [21] 
ST-100 Semitone-conversion (ref.100Hz) of the Hz scale [22] 

RANGE NORMALIZATION – VOWEL-EXTRINSIC 

GERSTMAN Range normalization [23] 
H & H Rescaling between 0 to 1 [14] 
LCE Linear compression/expansion method (cf. [5]) 

CENTROID NORMALIZATION – VOWEL-EXTRINSIC 

LOBANOV Z-score transformation [5] 
TO MEDIAN Normalization to median [13] 
TO IQR Normalization to IQR [13] 

LOG-MEAN NORMALIZATION – VOWEL-EXTRINSIC 

NEAREY1 Single log-mean procedure [11] 
NEAREY2 Shared log-mean procedure [11] 

 
Table 1: Selected normalization procedures 
divided by types according to [3] and [12]. 

2.5. Statistical analysis 

The group difference between the high and low 
vowels was investigated by means of paired t-tests. 
The pwr.t.test function of the pwr package [24] in R 
[25] was used to compute the power of the t-test. Its 
effect size was expressed as Cohen’s d [26], i.e., the 
difference between the mean F0 of the high and low 
vowels divided by the pooled standard deviation for 
the two groups. The significance level was set to 
0.05. The power was computed as a function of the 
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number of vowels per sample. For this purpose, the 
sample size was increased stepwise from 1 to 100 
vowels.  

3. RESULTS 

The power of the t-tests which aimed to detect a 
group difference between the F0 of high and low 
vowels is presented in Fig. 1 as a function of sample 
size and normalization technique. Table 2 provides 
the sample sizes required per sample (i.e., separately 
for both high and low vowels) to attain a statistical 
power equal to 0.8, which is often considered a good 
power level [28], and 0.99, which is close to the 
maximal power.  

 
 

Figure 1: Results of the power analysis as a 
function of sample size per sample and 

normalization procedure. 
 

Norm. 0.8 0.99  Norm. 0.8 0.99 
HZ 9.5 19.3  GERSTMAN 5.2 9.1 
BARK 9.3 19  H & H  5.2 9.1 
ERB 9.1 18.5  LCE 6.6 12.5 
LN 8.9 17.8  LOBANOV 5.2 9.1 
MEL  9.3 18.9  TO MEDIAN 5.1 9 
ST-100 8.9 18  TO IQR 5.7 10.5 
ST-1 8.9 18  NEAREY1 4.8 8.2 
ST-50 8.9 18  NEAREY2 7.4 14.3 

 
Table 2: Sample size per sample needed to reach 
statistical power of 0.8 and 0.99 as a function of 

normalization procedure. 

 
As can be seen in Fig. 1, the power curves of the 
different types of normalization clearly differ. The 
majority of the normalization techniques reach 
maximal power with a sample size close to 20. The 
unnormalized data in Hz (HZ) lead to one of the 
lowest power curves. Slightly higher power curves 
are achieved by scale conversion techniques (BARK, 
ERB, LN, MEL, ST-1, ST-100 and ST-50). It should be 

noted that the power curves of the three semitone 
conversions perfectly overlap. Range normalization 
procedures (GERSTMAN and H & H) result in higher 
power curves still. Relying on the same principle 
but differing in multiplication factor only, 
GERSTMAN and H & H exhibit the same power 
curves. The centroid normalization techniques 
(LOBANOV, TO MEDIAN and TO IQR) consistently 
lead to higher power curves: LOBANOV and TO 
MEDIAN yield the highest power curves of the three 
centroid normalization procedures. As far as log-
mean normalizations (NEAREY1 and NEAREY2) are 
concerned, NEAREY1 represents one of the highest 
power curves. On the contrary, NEAREY2 exhibits a 
lower power curve.  

Fig. 2 indicates that, relative to the unnormalized 
data, the difference in means/pooled SD ratio is very 
slightly modified by scale conversions. On the 
contrary, the log-mean, range and centroid 
normalization techniques clearly reduce the pooled 
SD relative to the difference in means.  

 
 

Figure 2: Ratio between the difference between 
the average F0 of high and low vowels (dark 

grey) and the pooled SD (light grey) as a 
function of normalization procedure. 

4. DISCUSSION 

This study aimed to investigate the effect of 15 
normalization techniques on statistical power. 1,471 
vowels from 47 speakers were analysed for F0. The 
inferential test that constituted the benchmark for 
this investigation was a paired t-test assessing the 
difference in F0 between high and low vowels.   

The most important conclusion from this study 
is that data normalization influences the power of a 
statistical test. The results show that some 
normalization techniques achieve higher power 
with smaller data sets than others. The 
unnormalized and scale-converted normalized data 
tend to require larger sample sizes to achieve higher 
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power than log-mean, centroid, and range 
normalized measurements.  

The differences between the normalization 
techniques can be explained by how the data are 
rescaled. Specifically, if the variability of the data is 
rescaled to a certain extent and if the subsequent 
effect size is rescaled to the exact same extent, the 
power is kept unchanged. If both the difference in 
means and the pooled SD are rescaled 
proportionally, the ratio between them remains 
unchanged. Consequently, the power of a statistical 
test based on normalized data is not affected. 
However, it is clear that some normalization 
techniques can significantly affect the difference in 
means/pooled SD ratio and as a consequence, 
statistical power. 

The differences between the scale conversion 
techniques as opposed to the log-mean, range or 
centroid normalization techniques can be explained 
in terms of whether the effect size is rescaled to the 
same extent as the variability of the data, see Fig. 2.  

Scale conversions [15, 17, 18, 19, 20, 21, 22] 
non-linearly transform the data so that only 
perceptually relevant differences are reflected on 
the normalized scale. However, larger differences 
between high and low vowels due to a higher 
average F0 remain larger on the normalized scale. 
The variability of the data is therefore not affected 
much.  

Range [5, 14, 23], centroid [5, 13] and log-mean 
[11] normalization methods use per-subject 
reference levels so that the variability between 
subjects is reduced. The centroid, range or log-mean 
reference thus help to reduce the per-speaker 
variability. As such, with respect to the reduced 
pooled SD, the difference in means is proportionally 
more important, hence the increased power. This is 
why a given power level can be achieved with fewer 
data than with unnormalized measurements, despite 
the data being the same.   

This means that normalizing F0 values can 
reduce the possibility that the null hypothesis is 
erroneously rejected. To put it another way, the 
increased power indicates that, while keeping effect 
size constant, the a posteriori reduced variability in 
normalized data can lead to a more confident 
rejection of the null hypothesis than what 
untransformed data would suggest. This should 
therefore be a matter of careful consideration when 
analysing the results of inferential tests. However, 
as the number of observations per sample increases, 
the statistical power is less affected. It should also 
be noted that a lower significance level, a lower 
effect size or increased variability in the data set is 
expected to increase the effect of the normalization 
procedures. 

5. CONCLUSIONS 

In the case of a large enough sample size, the choice 
of an adequate normalization procedure is only a 
matter of choosing a normalization that best levels 
out physiological variation while preserving 
phonemic and sociolinguistic information. 
However, if smaller sample sizes are used, the effect 
of normalizing on power should be considered 
because log-mean, range and centroid 
normalizations reduce variability and consequently 
enhance the statistical power as compared to 
unnormalized or perceptually rescaled values. Even 
if similar results are expected, a natural progression 
of this work is to analyse the effect of formant 
normalization methods on statistical power. 
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