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ABSTRACT

This paper introduces the concept of using probabilistic
articulatory-acoustic models in optimization-based
models of speech articulatory planning. In these
models, speech articulatory movements are assumed
to be performed such that they satisfy conflicting task
requirements, such as least effort and intelligibility. Our
model is used to account for intelligibility by computing
the posterior probability of a vowel given a vector
of formant values. These models can be trained on
formant values and associated vowel labels extracted
from available audio corpora. We present a minimal
example using a model of the American-English vocalic
system trained on formant values extracted from the
TIMIT database. A preliminary experiment illustrates
the interest of the approach by reproducing vowel
centralization when least effort is weighted more highly
than intelligibility.
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1. INTRODUCTION

Modeling speech production is a challenging task
as several aspects must be considered. Speech
communication varies depending on context, and
involves precise coordination of several articulators in
a short amount of time. One approach to understand
these mechanisms is to predict and reproduce them via
computational modeling of speech articulatory planning.
This approach consists of predicting movements of
speech articulators to be produced by a speaker given a
string of words and a set of task requirements for the
utterance (speech rate, prosodic structure. . . ).

Different theoretical issues related to speech
articulatory planning include speech variability [1],
dynamic modeling of speech articulatory
trajectories [2–4], the nature of coordination and
speech goals [5–7], and speech timing patterns [8–10].
Optimal Control Theory [11,12] is a promising approach
for tackling these issues, as it allows models of
articulatory planning to account for multiple factors
that affect the speech signal. Optimal Control Theory
approaches assume that human purposeful movements
reflect the optimal balance of costs such as those of not
meeting task requirements, and movement costs, such as
effort. These task requirements and movement costs are
modeled mathematically as a composite multi-objective
cost function to minimize. For speech, this involves

an efficient trade-off between production costs (e.g.
effort) and the costs of not being understood (the task
requirement of intelligibility). This has been proposed
by Lindblom in his Hyper- and Hypoarticulation (H&H)
theory of speech [1]. According to Lindblom, speech
variation occurs because of different adjustments of
the trade-off between maximal intelligibility, resulting
in hyperarticulation, and minimal articulatory effort,
resulting in hypoarticulation.

Following this approach, this paper focuses on
the mathematical modeling of intelligibility in the
objective function. Prior literature has proposed to
model the intelligibility cost as the distance from
targets [8, 13]. In Embodied Task Dynamics (ETD) [8],
the intelligibility cost is a linear function of the
distance from invariant canonical targets for vowels.
Although this linear function allows a qualitative
approximation of intelligibility (the closer to the target,
the more intelligibility), it does not provide a realistic
approximation of the mapping between intelligibility and
distance from the target, as there is no reason why this
should be a linear function. For stop consonants, the
cost is a binary function as these sounds require well-
defined, binary articulatory conditions (a stop is produced
in the presence of an occlusion, and isn’t if there isn’t a
full occlusion). This approach of classifying sounds in
terms of binary “meeting the target” vs. “not meeting
the target” has been extended to vowels in DIVA [14],
although in DIVA targets are defined as regions in
acoustic space, instead of as a single set of formants or
formant pattern. DIVA allows the target region areas
to be manipulated to account for particular contexts.
DIVA’s approach requires precise modeling of the target
regions for various speech styles, which may be difficult
as it requires a lot of data and learning steps to achieve.
Additionally, the DIVA approach suggests that vowels
inside the region boundaries are equally good, which is
a strong assumption.

In order to overcome these issues, in this paper
we propose a novel approach to speech targets and
intelligibility based on probabilistic articulatory-acoustic
models. The idea is to consider the intelligibility
function as the probability of a target speech sound
to be recognized as a function of an articulatory
configuration. On the assumption that human perception
of vowels is based on the statistical distribution of
produced vowels in the acoustic space, our approach
provides a more realistic approximation of intelligibility
during speech communication in a principled way. In
addition, our approach offers a more flexible way to
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account for different languages and speech variation.
The probabilistic model can be modified for specific
languages as long as labeled corpora are available for
each language. Speech variation can be modeled by
varying the weights assigned to each component of
the cost function (task requirements and movement
costs). This paper presents an example of such a
model used for American-English vowels, built using
a Gaussian Mixture Model (GMM) trained on formant
values extracted from an audio corpus [15, 16].

The structure of the paper outlines the main
contributions of the paper. Section 2 introduces
the minimal OCT-based model used in this paper to
test our approach. Section 3 details an example of
a probabilistic model built following our approach,
including the presentation of the corpus used for the
training data, and the characteristics of the model
components. Section 4 presents a short preliminary
experiment aiming at illustrating the interest of the
approach. In this experiment, we evaluate the impact of
the weight assigned to the least effort requirement on the
position of the optimized vowel in the formant space.

2. THE OPTIMAL CONTROL MODEL APPLIED
TO SPEECH PRODUCTION

This section details the articulatory model and the
composite objective function to minimize.

2.1. Multi-task objective function

Although many OCT-based models include objective
tasks other than intelligibility and effort, e.g., utterance
brevity [8], we will use a simplified model that
tests intelligibility only against articulatory effort,
i.e., our cost function contains only two elements,
one for intelligibility, and one for articulatory effort.
Consequently, the composite objective function used in
this paper is as follows:

(1) C(x) = αEE(x)+αI(1− I(x)),

where C(x), E(x), and I(x) are the cost function, the
effort cost (to be minimized), and the intelligibility cost
(to be maximized), respectively, which are function of the
model parameter vector x. The trade-off between effort
and parsing requirements is adjusted via the weights αE
and αI applied to the effort and the intelligibility costs.

2.2. Articulatory model

The vector x contains the parameters of an articulatory
model that describe the position of the speech articulators
and the geometry of the vocal tract at a given time instant.
In theory, it should also contain dynamic information
about the timecourse of these static parameters using a
dynamic model [2, 3, 8, 17, 18]. We made the choice of
using solely a static model (i.e. the Maeda model [19])
in order to focus on a single aspect of our model, namely
the intelligibility cost at a given time instant. Note that
this model is fully compatible with a dynamic model.

The Maeda model used in this paper [19] generates
midsagittal shapes of the vocal tract using 7 independent

articulatory parameters, as described in Figure 1. The
articulatory parameters are the principal components that
explain most of the observed variance in articulatory data.
They are expressed in terms of standard deviations above
or below the mean value, where the mean value (i.e. 0)
corresponds to a neutral position. The vector x form Eq. 1
contains the values of the seven parameters, where each
value is contained between -3 and +3.

Figure 1: The Maeda articulatory model and its 7
components. P1 controls the jaw position, P2 and
P3 control the position and the height of the tongue
dorsum, respectively, P4 the position of the tongue tip,
P5 and P6 the lip aperture and protrusion, respectively,
and P7 the larynx height. Figure extracted from [20].

2.3. Articulatory effort

In this paper, we consider articulatory effort as a
function of the distance between successive articulatory
configurations in the articulatory space spanned by
the parameters of the Maeda model, as suggested
in [21]. We will consider only two successive
configurations, where the starting configuration is the
neutral position configuration x0, assumed to be the vocal
tract configuration at rest. In the Maeda model, this
corresponds to the null vector, x0 = 0. The articulatory
effort is then the square of this Euclidean distance, which,
in this case, is simply the square of the Euclidean norm
of x. Additionally, we normalize the effort costs such
that it is between 0 and 1. The Maeda model contains
7 parameters, whose values are between -3 and +3. The
maximal squared Euclidean norm of the vector Emax then
equals to 63. Consequently,

(2) E(x) =
1

Emax
||x||2 = 1

63
||x||2.

2.4. Intelligibility cost

Considering a vowel v and a vector of formants f
produced by the articulatory vector x, the intelligibility
I(x) is the posterior probability of v given f, hence

(3) I(x) = P(v|f).

Computing f from x is done using the Maeda model
presented in Section 2.2. Estimating the probability is
done using a Gaussian Mixture Model (GMM) presented
in the next section.
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3. THE PROBABILISTIC ACOUSTIC MODEL

The probabilistic acoustic model is used to estimate the
likelihood of a target phone to be produced (or recognized
by the listener) given an articulatory configuration. In this
paper, we propose a corpus-based formant-to-probability
GMM that returns monophthong vowel likelihood within
a set of vowels given a formant pattern.

3.1. Corpus

We used the Vocal Tract Resonance (VTR) Corpus [15],
which contains manually extracted formant trajectories of
538 utterances from the TIMIT database [16], uttered by
186 speakers of American English.

3.2. Preprocessing

The values of the 4 first formants at the mid-point of
each of the 5526 analyzed monophthong vowels in the
VTR corpus have been extracted, resulting in a 5526×4
matrix. We then merged some vowels to form one group.
This includes the three following groups: /@/-like vowels
ax, axr, and ax-h, merging into a single ax class, /I/-like
vowels ix and ih merging into a single ih class, and /u/-
like vowels uw and ux merging into a single ux class.
Consequently, it results in 11 vowel classes.

Vocal Tract Length Normalization (VTLN) has been
applied to formant values [22] to remove speakers’
anatomic discrepancies. VTLN consists of estimating the
length of each speaker’s vocal tract from their formant
patterns, and then multiplying the formant values of each
speaker by a single factor such that they correspond to
the formants of a virtual speaker having a reference vocal
tract length Lref. We chose Lref so that it corresponds to
the length of the vocal tract in the neutral configuration
of the Maeda model, namely Lref = 16.27cm.

We also generated synthetic formant vectors that lie
outside the convex hull of the observed formants to
simulate non-vocalic sounds. This is done to prevent
the optimization process to produce unrealistic formant
patterns. 96286 formant vectors have been generated
this way, and classified in 57 different classes. We
chose to use several components for non-vocalic sounds
because the global distribution of non-vocalic sounds in
the formant space cannot be fitted with a single Gaussian.
We therefore chose to use 57 Gaussian distributions to
model the overall distribution of non-vocalic sounds, as
we found 57 to be a good trade-off between a good fit
of the overall distribution and a reasonably small amount
of components. The model then contains 57 + 11 =
68 components. Finally, minority classes are randomly
oversampled to create balanced data [23], yielding a total
number of 239020 vectors.

3.3. Parameters of the American English FtP model

The 68-component GMM is fitted on the data using the
iterative Expectation-Maximization (EM) algorithm. The
model is initialized from prior information on vowel
labels, namely each vowel observation is connected to
its label. Figure 2 shows a projection of the individual

probability function in the F1 − F2 space for the 6
following vowels: aa (/A/), ah (/2/), ao (/O/), eh (/E/),
iy (/i/), and ux (/u/). The centres of the vowel
distributions correspond to typical positions for each
vowel, as reported in the literature [24]. It also shows
overlap between vowels, which is in line with previous
observations [25, 26].

4. EXPERIMENTS

This section presents a preliminary experiment designed
to illustrate the usefulness of our approach for Optimal
Control Theory-based models. In this experiment, we
optimize the production of several vowels for different
ratios between the weights αE and αI assigned to the
effort and intelligibility costs, respectively. The idea
is to analyze the movement of the produced vowels
inside the F1−F2 vowel space when this weight ratio
varies. We hypothesize a centralization of the vowel
space with an increase in the effort weight. That is, giving
more penalty to articulatory effort should constrain the
optimized articulatory vector to have a smaller norm,
namely to be closer to the neutral position.

In order to conduct this experiment, we consider 4
vowels, namely aa, eh, iy, and ux (/A/, /E/, /i/, /u/,
respectively). For each vowel, we run the optimization
for different values of the effort weight αE , and we keep
αI = 1. For each optimization run, the initial solution is
the neutral position x0 = 0.

Fig. 3 shows the position in the F1 − F2 space of
the produced vowels for different values of the effort
weight. As expected, increasing the weight assigned
to the effort cost results in vowel centralization: their
position in formant space converges towards a central
position, corresponding to the formants of the neutral
configuration of the Maeda model. As a consequence,
the volume of the vocalic space becomes smaller as the
effort weight increases, as highlighted by the convex hull
shown in Fig. 3. Eventually, when the weight assigned
to the effort cost becomes too large, the returned solution
is always the neutral vocal tract configuration, and the
vowels are all at the same position in the vowel space.

Interestingly, the trajectory of vowels in the formant
space when varying the effort weight can exhibit large
gaps. This is clearly visible for aa in Fig. 3: The returned
solution for aa slowly moves towards the center for αE <
6 and then quickly reaches the center as soon αE > 6.
One possible explanation is that our model predicts a
larger effort to produce canonical aa than other vowels.
Indeed, E(x) ≃ 0.55 for the “optimal” aa, while it is
0.4, 0.12, and 0,10 for eh, ux, iy, respectively. As a
consequence, the threshold above which the effort cost
weight is too large to allow movement is lower for aa
than for other vowels.

These results illustrate the interest of our approach for
OCT models and also highlight possible future directions
for improving our model. Firstly, this paper introduces
a purely static model that considers articulatory effort
as a distance between the final articulatory configuration
and the neutral configuration. In real speech, articulatory
effort to produce a phoneme depends on the previous
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Figure 2: A projection of the individual probability functions for 6 vowels (aa, ah, ao, eh, iy, ux) in the F1−F2 space. For
each vowel, F3 and F4 are taken as the vowel’s mean value, and the probability P(v|f) is computed for various values of F1 and
F2.

Figure 3: The left plot represents the position of optimized vowels aa, eh, iy, and ux (/a/, /E/, /i/, /u/, respectively), in the
F1−F2 space for different values of the effort weight. The cross marker ’+’ represents the position for αE = 0. The marker
size and color differ according to the value of the effort weight. The larger the weight, the larger the marker. The right plot
represents the corresponding convex hulls for some values of effort weight (αE = 0, αE = 0.3, αE = 12, and αE = 160).

phone, on the timecourse of articulatory trajectories as
well as on the mass of the articulators. The next step
in our approach is therefore to use a dynamic model to
account for effort. Secondly, our model of articulatory
effort considers the movement of each articulator to
be equally effortful, which may not be true. Indeed,
some articulators may require more effort to move than
others (eg. jaw vs. tongue tip). In order to take this
into account, another improvement would be to weight
the static parameters with different coefficients. We
believe that this approach might potentially mitigate the
issues related to discrepancies among different vowels
(including the “jump” for aa vowel described above).

5. CONCLUSION

This paper has presented a probabilistic model to
be used in optimal control theory-based models of

speech articulatory planning. It consists of computing
the posterior probability of a vowel given the values
of its first four formants. This approach results
in a non-linear mapping between the distance of an
articulatory configuration from a canonical target and the
intelligibility of the produced target vowel.

This paper illustrates this concept by using this
approach in a minimal static OCT model that considers
only articulatory effort and the intelligibility as
conflicting tasks. Our results show that this model
reproduces the expected reduction and centralization of
the vocalic space when least effort is required.

Another interest of this approach is also to be very
flexible as models only require formant values and
labeled vowels as training data. Thus, models that
account for any language, dialect, or accented variation
of any language can be easily computed, assuming an
appropriate audio corpus is available.
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