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ABSTRACT

Speech emotion recognition can enhance machine-
human interaction. While traditional speech
emotion recognition systems tend to use prosodic
features for analysis, recent studies show
glottal features can provide valuable insight
into distinguishing different types of emotional
expressions. This paper presents a preliminary
investigation into the effectiveness of employing the
glottal waveform for speech emotion recognition
tasks. The JL corpus, a strictly-guided, simulated
emotional speech corpus in New Zealand English is
used for this study. The modelling and classification
tasks are conducted using 1D convolutional neural
network. The results show that glottal signal
enhances emotion classification accuracy compared
to raw audio signals, even with data augmentation.
This suggests the glottal source can serve as better
alternative input to speech emotion recognition
models, particularly when limited training data is
available.
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1. INTRODUCTION

The human voice is a powerful conveyor of
information. It can provide cues about the
speaker’s biological, psychological, and emotional
state [1]. The design of automatic speech
emotion recognition (SER) systems has important
applications in human-machine communication [2].
It is desirable for machines to be able to interpret
the emotional state of the user and respond to it
in an appropriate manner. The development of
SER systems is a challenging task, however, due
to difficulty in finding proper representations for
emotion embedding in speech.

The emotional state of a speaker has direct
effect on voice production, leading to physiological
changes in respiration, phonation, and articulation
[3]. Acoustic descriptors of emotional voice have
traditionally been provided in terms of prosodic
(e.g. pitch, speech rate) or spectral (e.g. MFCC)

characteristics for speech analysis [4]. Over the
past decade, however, there has been a growing
body of evidence showing glottal source contains
emotional content and glottal features can provide
valuable insight into distinguishing different types
of emotional expressions [5].

The source-filter theory describes human voice
production as a linear time-invariant system [6].
During the process of speech production, air
flow from the lungs passes through the glottis
and generates a quasi-periodic signal called the
glottal volume velocity waveform. Separating
the source (glottal waveform) and filter (vocal
tract) components enables the modeling of their
distinct contributions. The glottal waveform can be
separated from the speech signal via source-filter
deconvolution. One popular approach to achieve this
is through iterative adaptive inverse filtering (IAIF)
[7]. IAIF has been used and evaluated in various
experiments and it has been shown to yield rather
robust estimates of the glottal flow.

In recent years, speech emotion recognition
has been revolutionised by neural network
models, following their demonstrated success
in computer vision and speech recognition tasks
[8]. Neural networks are a powerful tool and been
shown to outperform traditional SER approaches.
Convolutional neural networks (CNNs) are
commonly used typologies in this area. One-
dimensional CNNs that learn acoustic models
directly from audio waveforms are becoming a
popular method in audio processing due to the
ability of these networks to take advantage of
the signal’s fine time structure [9]. Recent works
explored the use of time-series signals as input for
audio and speech processing with 1D CNNs [10].
The low-level layer of the model was shown to be
able to learn frequency-selective filters from raw
audio inputs [11]. It has been shown that features
learned directly from the audio waveform can
match, or outperform, the performance accuracy of
a model trained on hand-crafted features [10, 12]
Abdoli et al [13] proposed an end-to-end 1D
CNN for environmental sound classification from
raw audio signals. Different input sizes were
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evaluated and the proposed architecture was shown
to outperform 2D CNN models.

This study presents presents a preliminary
investigation into the effectiveness of incorporating
the glottal excitation source for emotion recognition
task from speech signal. We utilise the architecture
proposed in [13] to compare the model’s emotion
classification effectiveness when using two different
input types; raw audio and glottal flow.To the best of
our knowledge, this is the first attempt to consolidate
glottal analysis with convolutional neural networks.

2. METHODOLOGY

The glottal flow is estimated from raw audio
waveforms using inverse filtering algorithm from
the GVV Toolbox package in R [14]. The glottal
waveform is computed pitch synchronously using
the iterative adaptive inverse filtering algorithm [15].
It is a two-stage iteration process governed by the
principles of linear predictive coding, where the
glottal waveform is computed by subtracting the
contributions of the vocal tract and radiation load
from the speech signal for each analysis frame.
While the signal obtained through inverse filtering
may be only an approximate of the actual glottal
waveform and potentially result in experimental
bias, the IAIF algorithm was chosen because it is
widely used in the literature [16]. Each waveform is
downsampled to 16 kHz and split into multiple input
frame lengths to be fed into the network architecture;
0.1s (1,600 samples), 0.5s (8,000 samples), 1s
(16,000 samples), and 2s (32,000 samples). The
frames are extracted with 50% overlap and zero-
padded (if required).

The baseline CNN architecture [13] is constructed
by stacking two local feature learning block (LFLB),
two convolutional layers, and three fully connected
layers. The LFLB is designed to extract emotional
features from time-series data. Each LFLB consists
of one convolutional layer, one batch normalisation
(BN) [17] layer, one rectified linear activation unit
(ReLU) [18] layer, and one max-pooling layer. The
convolution layer learns by sliding filters across the
entire spatial dimension of the input. In a CNN,
the filters in early layers learn low-level features,
while the filters of the deeper layers learn high-
level features that resemble concepts. The result
of the convolution is a feature map. The filter
size, stride, and number of filters are provided
in details in [13]. All convolutions and pooling
operations are one-dimensional, i.e. only along
the axis representing time. The LFLB block is
followed by two convolutional layers, each with

batch normalisation and ReLU layers. The output
of the final convolutional layer is flattened and used
as input to two stacked fully connected layers, each
with ReLU activation. Due to data sparsity during
training, overfitting may be encountered. A popular
and easy to implement regularisation technique
is dropout [19]. Dropout is used to mitigate
the problem of overfitting in neural networks by
preventing co-adaptation of features during training.
Dropout at a rate of 0.5 is used between each dense
layer. The final output layer of this architecture is
a softmax classifier with 5 neurons (matching the
number of classes). We note that the network depth
is proportional to the input size, where the number of
convolutional layer is adjusted for the input length,
with deeper models used to process longer audio
segments.

3. EXPERIMENT

The JL corpus is a New Zealand English simulated
emotion speech corpus, developed for emotion
classification and synthesis in human-robot
interaction research [20]. It contains 5 primary
emotions: happy, angry, sad, neutral and excited.
The speech samples were collected from four
speakers (two male and two female) who are
professionally trained voice actors of New Zealand
English. The speech material consists of 15 neutral
sentences with equal distribution of English long
vowels - /a:/, /o:/, /i:/, /u:/. During the recording
session each speaker was asked to repeat the 15
sentences twice for every emotion. Two separate
recording sessions were conducted on different
days to account for speaker’s possible psycho-
physiological abnormality at the time of recording.
The audio clips were originally sampled at a rate of
44.1 kHz, but for the purposes of this study were
downsampled to 16 kHz. Overall, the JL corpus
contains 4 (speakers) × 5 (primary emotions) × 2
(repetitions) × 2 (sessions) = 1200 primary emotion
sentences.

The 1D CNN network was implemented in
TensorFlow Python library v2.9.0. The models
were trained on NVIDIA T4 graphical processing
unit (GPU) with 16 GB memory. Each model was
trained with a batch size of 16 for 1000 epochs
with early stopping. An Adadelta optimiser with
0.001 learning rate and 0.95 decay rate was used
[21]. Considering speaker independent recognition,
leave-one-speaker-out (LOSO) cross-validation was
carried out for the discrimination of emotions in
the JL corpus. The use of LOSO cross-validation
ensures that the models are not over-training to a
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Table 1: Test accuracy (%) for different input
frame length and input type, with and without data
augmentation (DataAug).

Audio
Length (s) Model Input

Raw Audio Glottal Flow
DataAug DataAug

0.1 34.8 35.7 37.7 39.8
0.5 37.3 41.4 40.9 44.7
1 38.8 43.8 42.2 45.8
2 35.0 42.4 36.5 43.0

particular speaker. Since there are four speakers
in the data set, the training set for each validation
consists of three speaker, whereas the validation
and test set were taken from an 80/20 split of the
4th speaker samples, respectively. Each validation
was preformed 10-fold, with the final test accuracy
calculated as the mean accuracy across all folds.

4. DISCUSSION

The models performances for each emotion category
can be interpreted from the confusion matrix, shown
in Figure 1. Figure 1a depicts the confusion
matrix for best accuracy model with raw audio
input. Figure 1b depicts the confusion matrix
for best accuracy model with glottal waveform
input. To study the model’s performance for
each emotion category, the confusion matrix was
calculated by averaging the confusion matrix across
ten cross-validation experiments for our best model
architecture. For both input types, the high
arousal emotions (e.g., angry, excited) are well
separated from the low arousal ones (e.g., sad).
Some of the most confused pairs are neutral-
sad and angry-excited, which are different on the
valence level. These erroneous classifications were
extensively reported by other SER studies [22,
23]. The results show that classification from
raw audio can discriminate between 2 emotions
(sad, excited), while glottal waveform input showed
discrimination between 3 emotions (happy, sad, and
excited). These findings imply that a neural network
trained on glottal waveforms is better equipped for
discriminating between different emotions, as it has
a greater capacity for emotion recognition.

The JL corpus presents speech samples for five
primary emotions spoken in New Zealand English:
happy, angry, sad, neutral and excited. Emotion
classification performance was tested using both
raw audio and glottal waveforms as inputs for an

end-to-end 1D CNN models. The performance
of the models was compared per input type and
input length, and the results are presented in
Table 1. The best performance was achieved using
glottal input across all model topologies. It is
apparent that models trained on glottal waveforms
outperform models trained on raw audio. The
16,000-input (1 second) 1D CNN is preferable over
other architectures, as it presents the best trade-off
between the number of neural network parameters
and prediction accuracy. This matches the findings
of the original study [13].

The lack of large amounts of training data to
train complex models is an ongoing challenge in
speech emotion recognition. Insufficient training
data can lead to overfitting and resulting in poor
generalisation for unseen data. One common
strategy to artificially expand the size of the training
data set is data augmentation. Creating new
samples through transformations of the existing
data can help improve classification invariance and
generalisation ability for neural network models.
Growing the training set through data augmentation
transformations have been shown to increased
model accuracy in speech recognition tasks across
all studies. General audio data augmentation
techniques include tempo perturbation, loudness
change, additive background noise, time-stretch,
and pitch shift [24, 25]. One of the key requirements
for data augmentation is to apply transformations
to the inputs in a way that preserves their labels
(ground truth does not change). In this study,
three data augmentation techniques were applied
on every utterance, doubling the size of the
training set. Over-lapping windows were used to
segment the input into various lengths. Since we
are interested in continuous frame-based speech
emotion recognition, 50% over-lap was applied
between successive windows. This was done
for both raw audio and glottal waveforms. A
common technique for raw audio data augmentation
is additive noise. For raw audio waveforms,
additional transformation was carried out through
distortion of the speech signal by adding noise from
Laplacian distribution [26]. We propose a new data
augmentation technique for glottal signals in the
form of time-shift. We can shift the glottal signal
left or right to create additional training data. We
used a time-shift degree ranging from -5 to +5 ms.
To the best of our knowledge this is the first attempt
at applying data augmentation to glottal waveforms.
The results show data augmentation boosted the
performance accuracy by 3-7% for both raw audio
and glottal waveforms, as shown in Table 1. These

5. Phonation and Voice Quality ID: 251

1748



(a) (b)

Figure 1: Normalised confusion matrix for best accuracy model with raw audio (a) and glottal waveform (b) as
input sources.

findings support the current trend in literature and
suggest data augmentation is a powerful tool for the
training on models on smaller data sets.

Even with the application of data augmentation
techniques, CNN models require substantial amount
of training data to yield tangible results. The JL
speech corpus used in this study has too few samples
for the network to adequately capture the variety
of emotions found in practice (e.g. cold anger
vs hot anger). This is reflected in the emotion
classification error rates observed in Figure 1.
If the characteristics of the speech samples used
for testing depart too much from those found in
the training set, accuracy is expected to be low.
When the training set is truly comprehensive, this
problem is diminished. The small sample size
of speakers (four) offers little variations for the
CNN models to learn general characteristics and
features. We noticed that the test accuracy for
one of the male speakers was consistently lower
than that of the other three speakers, which led to
lower performance accuracy overall. In addition,
since the corpus contains multiple repetitions of the
same sentence (2 sessions with 2 repetitions), the
corpus can be practically viewed as having only
600 unique samples, where the other 600 samples
offer slight variation and therefore can be viewed
as a form of data augmentation in itself. Thus,
while the networks trained in the context of this
work are not ready for practical use, the results
they yielded provided a wealth of information that
can be explored in future developments. Other
investigations in literature often don’t address this
issue; they don’t consider it significant or they
use widely-used data sets. It is recommended that

all results be interpreted in light of the limitations
associated to the respective training data sets.

5. CONCLUSIONS AND FUTURE WORK

This paper demonstrates the effectiveness of using
glottal waveforms as an alternative input for speech
emotion recognition models. An end-to-end 1D
CNN architecture was trained on both raw audio
and glottal flow waveforms in order to discriminate
between five primary emotions. The results show
that neural network models trained on glottal inputs
outperform the classification accuracy of those
trained on raw audio. This reinforces the prevailing
idea in the literature that the emotional content
of speech signals is conveyed through the glottal
pulse. Additionally, the efficacy of time-shift as
a data augmentation approach for glottal signals
has been demonstrated. Moreover, the influence of
input dimensionality on classification performance
underscores the significance of treating input
dimensionality as a hyper-parameter in network
architecture design. In conclusion, utilising the
glottal flow as the input type for 1D CNNs shows
potential for replacing raw audio, particularly in
studies with limited data constraints. Building
upon these findings, we intend to compare the
performance accuracy of 1D and 2D CNN models
for speech emotion recognition, using raw and
spectrogram representations of the glottal flow,
respectively. This will form the basis for our
future research into speech emotion recognition in
disordered speech.
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