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ABSTRACT 

 
When people who stutter speak chorally (in unison 
with another talker), their speech becomes more 
fluent. One hypothesis is that stuttering results from 
difficulty generating rhythmic speech gestures, and 
choral speech induces fluency by providing an 
external ‘pace-setter’ for speech rhythm.  

In this study, 20 participants who stutter read 
aloud, alone and chorally with an experimenter. We 
measured fluency (percent syllables stuttered) and 
used envelope modulation spectral (EMS) analysis to 
derive measures of speech rhythm. Participants 
stuttered significantly less in the choral condition 
compared to solo speech, and their speech rhythm 
also changed: linear discriminant analysis (LDA) 
identified a combination of 6 EMS metrics which, 
together, reliably differentiated between choral and 
solo speech.  

However, while some individual EMS metrics 
correlated with stuttering frequency, the specific 
rhythmic signature of choral speech identified by the 
LDA did not predict fluency, suggesting a complex 
relationship between speech rhythm and stuttering in 
this task. 
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1. INTRODUCTION 

Stuttering is a neurological speech production 
disorder that affects an estimated 1% of adults 
worldwide [1]. People who stutter (PWS) experience 
disruptions to their speech in the form of involuntary 
prolongation, repetition, and blocking of speech 
sounds. The disorder is highly variable- people vary 
in how severely they are affected [2], and their 
disfluency can fluctuate in seemingly unpredictable 
ways [3]. However, research has identified a handful 
of situations that temporarily cause a reduction in 
stuttering in nearly all PWS, including speaking in 
time with a metronome [4], talking with pitch-shifted 
or delayed auditory feedback [5], and speaking in 
unison with another talker (choral speech) [6]. 
Understanding why these conditions induce fluency 
may provide insight into the aetiology of the disorder. 
Here, we focus on choral speech, which has 
previously been identified as more effective at 
reducing stuttering than other fluency-inducing 
manipulations [7], [8].  

Since many of these manipulations affect the rate 
and rhythm of speech [6], it has been hypothesised 
that stuttering results from a deficit in the initiation 
and control of rhythmic speech movement [9], [10]. 
Thus, manipulations such as choral speech and 

metronome-timed speech induce fluency by 
providing an external signal that PWS are able to use 
to time their speech gestures [11].  

Envelope Modulation Spectral (EMS) analysis has 
emerged as a measure of speech rhythm that is well 
suited to the analysis of disordered speech as it is not 
affected by typical features of atypical speech, such 
as prolonged pauses, and can be applied 
automatically with no assumptions about linguistic 
content [12]. In this analysis, the amplitude envelope 
is extracted from the full-band signal and selected 
frequency bands, low-pass filtered, and Fourier 
transformed to quantify the amplitude modulation 
rates that dominate in the signal and in different 
frequency bands. Various metrics can be extracted 
from the resulting power spectra that represent 
different characteristics of speech rhythm.  

Liss et al. [12] successfully used discriminant 
function analysis with EMS to create rhythmic 
profiles that reliably distinguished different subtypes 
of dysarthria. These authors identified six metrics that 
provide information on different aspects of the speech 
signal, provided in Table 1 below.  

 
Peak 
frequency 

The frequency in Hz of the peak in the 
spectrum with the greatest amplitude. 
This identifies the dominant rate of 
modulation in the signal. 

Peak 
amplitude 

The amplitude of the peak frequency 
(normalised by dividing by the overall 
amplitude of the spectrum). This indicates 
how much the rhythm is dominated by the 
peak frequency. 

Energy 3-6 
Hz 

The sum of energy between 3-6 Hz, 
normalised. Energy in this band is 
correlated with intelligibility [14] and 
captures syllable durations [15]. 

Energy 0-4 
Hz 

The sum of energy between 0-4 Hz, 
normalised. Energy above and below 4Hz 
was identified by [12] as important 
predictors of dysarthria type. 

Energy 4-
10 Hz 

The sum of energy between 4-10 Hz, 
normalised. 

Energy 
Ratio 

Energy 0-4 Hz divided by Energy 4-10 
Hz. 

 
Table 1. EMS predictors of interest identified by 

Liss et al., and their meaning. 
 

Applying this approach to stuttering, Dechamma 
& Maruthy [13] used these six metrics to analyse 
speech rhythm during choral and solo speech. They 
found that, when PWS spoke chorally, they stuttered 
less and their mean peak frequency was higher than 
in the solo reading condition, while mean peak 
amplitude was lower during choral speech than solo 
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reading. This suggests that choral speech does change 
some aspects of speech rhythm, but it is not yet clear 
whether these changes cause a reduction in stuttering 
frequency, or merely co-occur with it. We aim to 
build on this existing work, using the metrics and 
discriminant analysis approach identified by Liss et 
al. [12] to further explore the questions raised by 
Dechamma & Maruthy [13] by directly testing the 
relationship between speech rhythm and stuttering 
frequency. 

To examine this, we use linear discriminant 
analysis to identify the combination of EMS metrics 
that make up the ‘rhythmic signature’ of choral 
speech, and then test whether these metrics also 
predict stuttering frequency. 

2. METHODS 

2.1. Participants 

21 adults who self-identified as people who stutter 
took part. They underwent a hearing test using  an 
Amplivox 116 Screening Audiometer with DD45 
earphones. Normal hearing was defined as a four-
frequency pure tone average of less than 20dB in each 
ear. One participant’s threshold exceeded this level 
and they were excluded for this reason. Thus, 20 PWS 
(8 female, 13 male) took part in the study. All 
participants were adult native British English 
speakers (mean age: 40 years, s.d. 12 years). 

2.2. Task 

Participants were asked to speak spontaneously for 
three minutes, read a passage aloud on their own, and 
then read a second passage in synchrony with an 
experimenter. They sat in a soundproofed booth 
facing a RODE NT1-A one-inch cardoid condenser 
microphone and wearing Beyerdynamic DT770 Pro 
circumaural headphones. The microphone was 
connected to a Windows computer via a Fireface UC 
high-speed USB audio interface. Their voices were 
recorded at 44100Hz with 16-bit quantisation using 
Adobe Audacity 3.0. 

For the choral speech task, the experimenter spoke 
with the participant from outside the booth into an 
AKG 190E cardoid dynamic microphone, and heard 
through AKG K240 Studio on-ear headphones. The 
participant and experimenter were unable to see each 
other, ensuring that the pair could only use auditory 
cues to synchronise with each other. 

Experiment materials were taken from Riley’s 
Stuttering Severity Instrument IV (SSI-IV) [16]. The 
order of the read passages was counterbalanced 
across participants.  

2.3. Measures of stuttering severity 

Participants’ fluency was assessed by a rater who had 
not been involved in the original experiment and was 
naive to the experimental manipulation. They 
performed the evaluation using the methods 
described in [16].  This gave four measures: 

Stuttering frequency: The number of stuttering 
incidents divided by the total number of syllables 
uttered. 

Stuttering duration: The average length of the 
three longest stuttering events timed to the nearest 
tenth of a second. 

Naturalness: Perceived speech naturalness, on a 
scale from 1 (highly natural sounding speech) to 9 
(highly unnatural sounding speech). 

Baseline severity score: A score out of 46, 
calculated by taking ratings of stuttering frequency, 
duration, and physical tics in the spontaneous and 
solo speech conditions, converting to scale scores and 
adding them together. As it is rarely possible to 
produce spontaneous speech chorally, this score can 
only be calculated for the non-choral condition.  

2.4. Envelope Modulation Spectrum metrics 

Measures of speech rhythm in the solo and choral 
reading conditions were derived from the Envelope 
Modulation Spectrum of the whole signal using a 
MATLAB script following the methods described in 
[12], [13] 

The full signal was filtered into seven octave 
bands centred around 125, 250, 500, 2000, 4000, and 
8000 Hz. The amplitude envelope was extracted from 
each of the octave bands and the full-band signal, 
half-wave rectified and low-pass filtered at 30Hz 
using a fourth-order Butterworth filter, before being 
downsampled (to 80Hz, mean subtracted). The power 
spectrum of each down-sampled envelope was 
calculated using the Goertzel algorithm and 
converted to decibels for frequencies up to 10 Hz.  

 For each of the seven octave bands, and the full-
band signal, the MATLAB script calculated six EMS 
metrics, as described in Table 1: peak frequency, peak 
amplitude, energy 3-6 Hz, energy 0-4 Hz, energy 4-
10 Hz and energy ratio. 

4. ANALYSIS 

Analysis was carried out in R 4.2.2 [17] using the 
tidyverse [18], MASS [19], caret [20], klaR [21] and 
lme4 [22] packages.  

4.1. Linear discriminant analysis 

The EMS analysis produced 48 variables (six 
different metrics for each of seven octave bands and 
the full signal). To identify which, if any, of these 
variables best characterised the rhythmic differences 
between choral and solo speech, we ran stepwise 
linear discriminant analysis. To meet the assumption 
of equal variance, variables were scaled to have a 
mean of 0 and a standard deviation of 1. 

 We identified collinear variables with a pair-wise 
absolute correlation of 0.8 or above, and removed the 
variable with the largest mean absolute correlation for 
each pair. This reduced the predictor set to 25 
variables.  

The remaining variables were entered into 
stepwise forward variable selection. Beginning with 
the variable that most separated the conditions (choral 
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vs solo), at each step, the variable that best minimised 
Wilk’s lambda was selected, and included in the 
model if the F-statistic for the change was significant 
(p<0.05). If, after adding a new predictor, any 
variable no longer significantly contributed to the 
model (p<0.2), it was removed.   

This process identified six predictors, which were 
entered into a linear discriminant analysis to find a 
weighted linear combination of the predictor 
variables capable of classifying observations into 
either the choral or solo speech condition.  

The analysis was run across the whole dataset to 
generate discriminant scores for data visualisation 
and further analysis, and with leave-one-out cross-
validation to estimate the model accuracy. Results for 
both analyses are reported as the percentage of 
observations successfully classified. 

4.2. Linear mixed-effect regression 

We used model comparison with linear mixed effects 
regression to evaluate main effects of condition on 
stuttering and speech rhythm, as well as the 
relationship between stuttering frequency and speech 
rhythm. 

Models were constructed for stuttering frequency, 
duration, naturalness, mean peak frequency and mean 
peak amplitude with each variable modelled as a 
function of condition (contrast-coded as 0.5, -0.5). 
Then, to explore the relationship between stuttering 
and speech rhythm, we modelled stuttering frequency 
(percentage of syllables stuttered) as a function of the 
linear combination of variables identified by the 
LDA.  

This model was intended to discern whether the 
specific changes in speech rhythm caused by choral 
speech also predict fluency. To look at the 
relationship between speech rhythm and stuttering 
more generally, we modelled stuttering frequency as 
a function of peak frequency and peak amplitude 
(collapsed across all bands).  All models included 
random intercepts for each subject. 

These results were compared to the null model 
(with condition taken out), using a likelihood ratio 
test. 

(1) H1: DV ~ IV + (1 | Subject) 
(2) H0: DV ~ 1 + (1 | Subject) 

5. RESULTS  

5.1. Effect of choral speech on fluency 

Assessment for stuttering severity found a wide 
spread of SSI-IV scores at baseline, ranging from 6 to 
44 out of a possible 46 (mean 23.6, s.d. 10.9). 
However, when participants spoke chorally, they all 
converged on a relatively fluent speaking style, 
regardless of baseline severity.  

Statistical analysis revealed a significant effect of 
condition on stuttering frequency (β = -3.96, SE = 1.6, 
χ²(1) = 5.9, p = 0.015) and duration (β = -3.71, SE = 
1.49, χ²(1) = 6.07 , p = 0.01):  participants stuttered 
significantly less, and the duration of their stutters 
were shorter, during choral reading compared to solo 

reading. However, there was no significant effect of 
condition on perceived naturalness (β = 0.7, SE = 
0.62, χ²(1) = 1.46 , p = 0.23); participants’ choral 
speech did not sound any more natural than when they 
spoke on their own (Figure 1). 
 

Figure 1: Individual scores for duration, stuttering 
frequency and perceived naturalness mapped 
between the solo and choral speaking conditions 
 

5.2. Effects of choral speech on speech rhythm 

There was a significant main effect of condition on 
peak frequency (β = 0.22, SE = 0.58, χ²(1) = 13.67 , p 
= 0.0002); peak frequency was higher in choral 
speech than in solo speech. However, there was no 
significant effect of condition on peak amplitude (β = 
0.39, SE = 2.96, χ²(1) = 0.0176 , p = 0.89). 

 Stepwise variable selection identified six 
predictors: peak frequency in three octave bands 
(125, 2000 and 1000 Hz), energy between 4-10 Hz in 
the 4kHz octave band, full band energy between 3-
6Hz and energy ratio in the 8kHz octave band, with 
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peak frequency in the 125Hz band as the most 
important predictor. Results are shown in Table 2. 

 
  

Metric Band Λ F 
 

p 
 

F 
diff 

p 
diff 

Peak 
frequency 

125 0.88 5.38 0.026 5.38 0.026 

Energy 4-
10 Hz 

4000 0.82 4.04 0.026 2.50 0.122 

Peak 
frequency 

2000 0.78 3.38 0.029 1.87 0.180 

Energy 3-
6 Hz 

Full 
band 

0.70 3.78 0.012 4.12 0.050 

Energy 
ratio 

8000 0.64 3.85 0.007 3.17 0.084 

Peak 
frequency 

1000 0.59 3.80 0.005 2.64 0.113 

 

Table 2: Predictors identified by stepwise variable 
selection, with F-statistics and p-values for the 

significance of the overall model, and the 
difference between models when the predictor is 

included vs excluded. 
 

Using these variables, the linear discriminant 
analysis was able to predict which condition each 
speech sample belonged to with 80% accuracy (leave-
one-out cross-validation: 67.5%). Figure 2 shows the 
linear discriminant scores compared to the actual 
classifications. Four observations (out of 20) from 
each condition were mis-classified. 

Figure 3: Performance of the linear discriminant. 
Observations above the dotted line were classified 

as choral speech; those below the line were 
classified as solo speech. The colour of the data 
points shows the actual class of the observation. 

5.3. Association between fluency and rhythm metrics 

There was a significant effect of peak frequency on 
stuttering frequency (β = -1.25, SE = 0.35, χ²(1) = 
12.367 , p < 0.001): peak frequency reduced as 
stuttering frequency increased. However, peak 
amplitude did not significantly predict stuttering 
frequency (β = -0.01, SE = 0.01, χ²(1) = 3.11 , p = 
0.08).  

 The linear combination of six variables identified 
by the LDA did not significantly predict stuttering 
frequency (χ²(6)= 7.93, p = 0.24), nor were any of the 
individual components significant. Estimates, 
standard errors, t-statistics and p-values for each of 
the 6 variables are given in Table 3. 

 
 
 
 

Metric Band β SE df t p 
 

Peak 
frequency 

125 -6.16 4.55 24.9 -1.36 0.188 

Energy 4-
10 Hz 

4000 -0.01 0.20 32.8 -0.03 0.978 

Peak 
frequency 

2000 -1.28 1.81 31.1 -0.71 0.483 

Energy 3-
6 Hz 

Full 
band 

-23.3 64.9 28.1 -0.36 0.722 

Energy 
ratio 

8000 0.01 0.10 30.8 0.05 0.958 

Peak 
frequency 

1000 -1.99 1.36 32.0 -1.47 0.152 

 

Table 3: Output of linear mixed effects analysis. 
Degrees of freedom estimated using the 

Satterthwaite approximation. 

6. DISCUSSION 

In keeping with previous studies, we found that choral 
speech resulted in changes to speech rhythm and 
stuttering behaviour, compared to solo reading. 
Speaking chorally reduced stuttering frequency and 
duration in our participants, regardless of baseline 
severity. However, there was no effect on perceived 
speech naturalness, perhaps because the rhythmic 
changes caused by choral speech sound as unnatural 
as stuttering. 

Our attempt to characterise the rhythmic profile of 
choral speech using EMS metrics met with some 
success. While we found no relationship between 
peak amplitude and condition or stuttering frequency, 
choral speech did result in an increase in mean peak 
frequency compared to solo speech, consistent with 
[13], and mean peak frequency was inversely 
correlated with stuttering frequency.  

Linear discriminant analysis identified six EMS 
metrics that, in combination, significantly predicted 
which condition (solo or choral) an observation 
belonged to. Despite the association between overall 
peak frequency and stuttering frequency, this 
combination of metrics did not significantly predict 
stuttering severity compared to the null hypothesis.  

Overall, it appears that choral speech and induced 
fluency are both related to increases in the dominant 
rate of modulation (i.e., peak frequency), but choral 
speech is further characterised by more subtle 
changes in speech rhythm that are not correlated with 
stuttering frequency. As the sample size was 
relatively small, these results should be interpreted 
with caution. A further drawback of our study is that 
we did not test a control group of typical speakers to 
contrast with PWS. Future work could test the 
hypothesis that PWS converge on typical speech 
rhythms during choral speech by comparing the 
ability of discriminant function analysis to separate 
PWS and controls when they speak alone with when 
they speak chorally.   
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