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ABSTRACT 
 
Speech sound errors are known to occur more often 
as the interfering speech sounds are phonetically 
more similar. This paper aims to test the general 
hypothesis that the phonetic contrast between 
interfering speech sounds also mediates the odds of 
detection and repair of such a speech error. This was 
investigated by re-analyzing responses from four 
published experiments in which speech errors had 
been elicited, here using Bayesian modeling with 
random effects of participants and stimuli.  

Results show that with increasing phonetic 
contrast among the segment involved, speech errors 
occur less frequently (as expected); those errors tend 
to be detected and repaired more frequently, with 
early repairs being more prevalent than late repairs, 
as predicted. These patterns suggest that repair is not 
triggered by conflict during production, but by error 
detection during self-monitoring.  
 
Keywords: self-monitoring, speech error, speech 
production, speech preparation. 

1. INTRODUCTION 

Most speakers produce occasional speech errors, 
some of which they detect and repair. Detection (and 
repair) may occur relatively early after the error 
(before speech is initiated), e.g. v..horizontal [1]; 
presumably such detection is based on the speaker 
"hearing" her/his own internal speech, as the error-to-
interruption interval is too short for auditory 
processing and speech interruption. Detection may 
also occur relatively late after the error, presumably 
based on the speaker hearing his/her own overt 
external speech [2]. Both routes of detection involve 
comprehension or perception of the speaker's own 
(internal or external) speech. Production-based 
models of self-monitoring, by contrast, presume that 
self-monitoring occurs during speech production (not 
perception). In one such model [3], conflict may arise 
between multiple speech sounds competing for the 
same slot in the sequence being prepared, and this 
conflict in itself (indirectly) triggers prevention or 
repair of the impending speech sound error.  

The present paper aims to test the general 
hypothesis that the phonetic contrast (distance, 

inverse of similarity) between the competing speech 
segments affects self-monitoring. Speech errors are 
known to occur less frequently as the phonetic 
contrast between competing sounds increases [e.g. 4, 
5], but here we focus on whether error detection and 
repair too is mediated by phonetic contrast among the 
segments involved. With increasing phonetic contrast 
between competing sounds, we predict (1) that errors 
will occur less frequently (as reported before), (2) that 
those errors will however be detected more frequently 
(due to their greater saliency during monitoring), and 
(3) that those detections will occur early (rather than 
late) more frequently.  

2. METHOD 

To test the above predictions, this paper re-analyzes 
data from four so-called SLIP experiments [6] 
involving Dutch elicited speech errors. The raw data 
were taken from [7, 8]. 

2.1. SLIP experiments 

SLIP experiments aim to elicit exchange errors 
between the initial consonants in a two-word C1VC 
C2VC stimulus, e.g. zaal boom in Dutch. The 
exchange is elicited by means of presenting priming 
C2VC C1VC precursors, e.g. bon zet, bek zeef, baai 
zoop. The precursor word pairs and the stimulus word 
pair appear subsequently on the computer screen (for 
900 ms + 100 ms blank screen) and the participant 
needs to read each word pair silently. Every now and 
then, a visual prompt (??????) appears on the screen 
for 900 ms, upon which the participant has to speak 
aloud the last-presented word pair. In the SLIP 
experiments re-analysed here, the target stimulus was 
always the 5th word pair in a trial, and it was always 
preceded by at least 3 priming precursors. A typical 
spoken response containing the elicited error might be 
baa.. zaal boom. Participants were under time 
pressure, because they had only 900 ms to respond 
(after the prompt) before a buzzer would sound.  

Dependent variables are the category of response 
(see below), and for error responses whether or not 
the participant overtly detected his/her speech error 
(true for the example above), and for detected errors 
also the time delay (in ms) from the onset of the 
erroneous consonant to the moment the speaker 
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finished or broke off her/his spoken response (e.g. 
duration of baa). From the response set, hesitations 
and omissions were removed, with N=32 368 
observations from 433 participants remaining.  

2.2. Phonetic contrast 

The SLIP stimuli in the present corpus varied in the 
strength of phonetic contrast (or similarity) between 
the two interfering initial consonants in the stimulus 
word pair. The two consonants could differ 
• in two features, viz. both place and manner of 

articulation (labeled pm2; 15 096 observations 
from all experiments); 

• in a single feature, viz. either in place or in 
manner of articulation, but not in both (labeled 
pm1; 13 469 observations from all experiments); 

• in their voicing feature (labeled voicing; 3 803 
observations from two experiments). 

Although the latter two contrasts both involve a single 
feature, the voicing contrast has been shown to be 
weak for Dutch speakers [9], and Dutch listeners 
perceive voicing of initial consonants less accurately 
than either place or manner [10, p.3674].  
Observations involving vowel exchanges (in one 
experiment) have been ignored in the present paper, 
because the timing of (errors in) initial consonants 
and nuclear vowels cannot be compared sensibly. 

2.3. Responses 

Responses were classified into one of the categories 
listed in Table 1.  

 
label description example 
fluent fluent, correct zaal boom 
elic. error 
(repaired) 

elicited single 
error, repaired 

baa..  
zaal boom 

elic. error 
(unrepaired) 

elicited single 
error, unrep'd 

baal zoom 

other error other error(s) boog baan 
hesitation  hesitation or 

omission 
...eh... 

 
Table 1: Response categories for an example 
stimulus zaal boom in a Dutch SLIP experiment. 

 
In total, there were 28 508 fluent responses, 1 803 
elicited errors (5.6%), and 2057 other errors. The 
SLIP technique is obviously very inefficient in 
eliciting speech errors. Moreover, errors were 
distributed very unequally over participants, as shown 
in Fig.1: 63 participants (15%) did not produce any 
elicited error over n=72 or n=110 trials per experi-
ment, and most participants produced only a single 
elicited error. The top 77 (18%) contributing 

participants made half of the elicited errors (dark bars 
in Fig.1), and the top 177 participants (or 41%) 
contributed 1442 (or 80%) of the elicited errors. The 
distribution of errors over stimuli is similarly 
unequal. In our analyses below we will therefore 
consider both the effects of participants and of 
stimulus items.  

 
Figure 1: Distribution of the number of elicited errors, 
over 433 participants in the corpus of SLIP responses.  

2.4. Elicited errors detected early or late 

Of the 1803 elicited errors, 483 (27%) had been 
detected and repaired. Following [11] the bimodal 
distribution of the log-transformed error-to-cutoff 
times was used to classify repairs as either early 
(presumably based on internal speech) or late 
(presumably based on overt speech, cf. §1). 
Unsupervised mixture modeling [12, 13] in R [14] 
suggested two underlying gaussian components 
making up this bimodal distribution. (Here 5 
responses were ignored because of missing error-to-
cutoff times, and 5 were ignored because of outlier 
values between 7 and 15 ms.) Peaks of the two 
gaussians were at 133 ms and 592 ms respectively. 
Using the threshold error-to-cutoff time at 425 ms, 
errors were classified as detected and repaired early 
(371 errors, 21%) or late (112 errors, 6%).  

2.5. Models 

The three predictions above were tested by means of 
three mixed-effects models, viz. one for each 
prediction. First, using all remaining responses, 
multinomial model (1) assesses the effect of phonetic 
contrast (similarity, 3 categories, see §2.2) on the 
odds of an elicited error and on the odds of other 
error(s); the baseline response category are the fluent 
and correct responses.  
(1) responsecat ~ 0 + sim +  
 ( 1 + sim | ID ) + ( 0 + sim || stim ), 
 family=multinomial, data=allresponses 

The second, binomial model (2) zooms in on the 
1803 elicited errors (see §2.3), and assesses the effect 
of phonetic contrast (similarity) on the odds of an 
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elicited error being detected; the baseline repair 
category are the undetected (unrepaired) responses. 
(2) (repaircat!=unrep) ~ 0 + sim + 
 ( 1 + sim | ID ) + ( 0 + sim || stim ), 
 family=binomial, data=elicitederrors 

Third, multinomial model (3) also zooms in on the 
1803 elicited errors, and assesses the effect of 
phonetic contrast (similarity) on the odds of an early 
repair and on the odds of a late repair; the baseline 
repair category are again the unrepaired responses.  
(3) repaircat ~ 0 + sim +  
 ( 1 + sim | ID ) + ( 0 + sim || stim ), 
 family=multinomial, data=elicitederrors 

Thus, models (1) to (3) included population-level 
effects of phonetic contrast (or similarity), group-
level effects of participants (ID) and of stimuli, and 
allowed effects of phonetic contrast to vary over 
participants and over stimuli ("random slopes"). 

2.6. Analysis 

Models (1) to (3) were estimated using Bayesian 
methods in R [15, 16, 17]. Each model was estimated 
in 4 independent chains of 3000 iterations (with 1000 
warmup), using NUTS sampling. This yielded 8000 
post-warmup iterations.  

For group-level ("random") estimates, we report 
the 95% credibility interval of the posterior 
distribution. For population-level ("fixed") estimates, 
we report the 95% highest posterior density interval 
(HDI) [18], which is the narrowest interval containing 
95% of the probability mass of the posterior 
distribution. If two model parameters have non-
overlapping HDIs, then we have good grounds to 
believe that those parameters are different. For all 
models reported below, R-hat and other diagnostics 
did not indicate any convergence problems.  

3. RESULTS 

In all models (1−3), between-item variation (in items' 
odds per category) was similar across conditions of 
phonetic contrast. In the multinomial models (1) and 
(3), between-participants correlations among their 
odds across conditions were not credibly different 
from zero. 

Multinomial model (1) estimated the odds of an 
elicited error, and of unelicited error(s), against the 
baseline of correct and fluent responses (N=32 368 
observations). The group-level coefficients showed 
that between-participant variation (in participants' 
odds of the elicited error and in their odds of other 
errors) was higher in conditions eliciting errors in 
place and/or contrast (i.e. in conditions pm1 and pm2) 
as compared to the condition eliciting errors in 
voicing [for elicited errors: sd(intercept) 0.54 (0.42, 
0.66), pm1 +0.31 (0.06, 0.54), pm2 +0.51 (0.26, 

0.73)]. Thus, participants are more similar in their 
propensity of voicing errors than in their propensity 
of errors involving place and/or manner -- even 
though voicing errors were elicited in only two of the 
four SLIP experiments (see §2.2).  

The population-level coefficients of model (1), 
for elicited errors, are illustrated in the left panel of 
Figure 2, broken down by phonetic contrast. 

 
Figure 2: Summary of posterior distributions of 

population-level coefficients in models (1) and (2), 
broken down by strength of phonetic contrast. Symbols 

are plotted at the median of the posterior, thick lines 
denote 50% HDI and thin lines denote 95% HDI (see 
text). Left: model (1), log odds of elicited error; right: 

model (2), log odds of repair of elicited error. 
 

The odds of an elicited error are highest if a 
voicing error is elicited, considerably lower if a place-
or-manner error is elicited, and lowest if a place-and-
manner error is elicited. The odds of other (non-
elicited) errors, not shown in Figure 2, follow the 
same pattern, with medians at −2.60, −2.74 and −3.02 
respectively, but with overlapping 95% HDIs. 

Binomial model (2) zooms in on the odds of repair 
of the elicited errors only (N=1803 observations). The 
group-level coefficients showed again that between-
participant variation (in their odds of repair of an 
elicited error) was higher in conditions eliciting pm1 
and pm2 errors as compared to the condition eliciting 
voicing errors [repair: sd(intercept) 0.93 (0.58,1.28), 
pm1 +0.60 (0.04, 1.36), pm2 +0.70 (0.02, 1.70)]. 
Thus, participants are more similar in their propensity 
to repair an elicited voicing error than to repair an 
elicited error involving place and/or manner.  

The population-level coefficients of model (2) are 
illustrated in the righthand panel of Figure 2. 
Remarkably, the pattern is the opposite of that in the 
lefthand panel: the odds of repair of an elicited error 
are lowest if a voicing error is elicited [−3.21 (−4.24, 
−2.44])], considerably higher if a place-or-manner is 
elicited [−1.12 (−1.46, −0.81)], and highest if a place-
and-manner error is elicited [−0.34 (−0.72, +0.04)].  

Multinomial model (3) also zooms in on the 
elicited errors only. The group-level coefficients 
showed once again that between-participant variation 
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(in their odds of early and of late repairs) was higher 
in conditions eliciting errors in place and/or contrast 
(i.e. in conditions pm1 and pm2) as compared to the 
condition eliciting errors in voicing [early repairs: 
sd(intercept) 0.60 (0.05, 1.12), pm1 +0.49 (0.02, 
1.21), pm2 +0.57 (0.03, 1.33); late repairs: sd 0.90 
(0.13, 1.64), pm1 +0.65 (0.03, 1.65), pm2 +1.38 (0.09, 
3.17)]. Thus, participants are more similar in their 
repair propensity of voicing errors than in their repair 
propensity of errors involving place and/or manner. 
Because there were only 30 pm2 errors being repaired 
late, the variation among participants in estimating 
the odds of late repair must be very large.  

The population-level coefficients of model (3) are 
illustrated in Figure 3.  

 
Figure 3: Summary of posterior distributions of 

population-level coefficients in model (3), broken down 
by strength of phonetic contrast and by type of repair.  

(See Figure 2.)  
 
The odds of early repair are lowest if a voicing error 
is elicited [−3.93 (−4.97, −3.04)], considerably higher 
if a place-or-manner error is elicited [−1.54 (−1.95, 
−1.15)], and highest if a place-and-manner error is 
elicited [−0.46 (−0.86, −0.09)], with non-overlapping 
95% HDIs. The odds of late repair are approximately 
the same across the phonetic contrasts. Thus the 
effects illustrated in the righthand panel of Figure 2 
(odds of repair) are mainly due to early repairs, and 
not to late repairs.  

4. DISCUSSION 

The results of model (1) (Fig.2, left) confirm that the 
relative number of speech errors increases with 
phonetic similarity of the interfering consonants in 
the stimulus (and decreases with their phonetic 
contrast) [e.g. 4, 5], most clearly for interfering 
consonants contrasting in place and/or in manner. 
Moreover, the higher error rates for stimuli involving 
the voicing contrast confirm that this voicing contrast 
is indeed considerably weaker in Dutch (in speech 
preparation and articulation and monitoring) than 
either a place or a manner contrast [cf. 9]. 

In this paper, however, our focus is on whether and 
how quickly these elicited speech errors are detected 
and repaired. We have predicted that errors involving 
a stronger phonetic contrast are detected more 
frequently. This prediction was confirmed by the 
results of model (2) summarized in Fig. 2 (right). 
Elicited voicing errors (circles) are relatively 
common, but they are detected and repaired relatively 
rarely; elicited place-and-manner errors (squares) are 
relatively rare, but these are detected and repaired 
relatively frequently (with high odds of detection and 
repair); elicited place-or-manner errors have 
intermediate odds of error and of repair.  

The results of model (3) in Fig. 3 show that the 
effect of phonetic contrast works mostly in early 
repairs, rather than in late repairs. Elicited voicing 
errors (circles) are hardly repaired early; elicited 
place-and-manner errors (squares) are repaired early 
quite often; elicited place-or-manner errors 
(diamonds) have intermediate odds of early repair, all 
with non-overlapping posterior distributions.  

Regarded differently, the prevalence of early 
repair over late repair increases with phonetic 
contrast: there is no such prevalence for voicing 
errors (circles); the prevalence is strongest for repair 
of errors involving both place and manner contrasts 
(squares), with an intermediate prevalence for errors 
involving either a place or a manner contrast 
(diamonds). Thus speech errors involving a strong 
phonetic contrast tend to be detected and repaired 
early (Fig. 3); errors involving a weak contrast such 
as voicing tend to be detected early less often (than 
strong-contrast errors, Fig. 3) or these weak-contrast 
errors tend to be detected not at all (low odds of 
detection, Fig. 2).  

The pattern in Figure 2 is difficult to reconcile 
with a conflict-based theory of self-monitoring [e.g. 
3]. We assume that stronger phonetic contrast 
between two competing items would result in a 
greater separation between the two items in their 
relative activation and therefore in less conflict during 
production. (This would lead to fewer errors, which 
was indeed observed in the lefthand panel of Fig. 2.) 
Less conflict would however also lead to fewer (and 
later) detections and repairs, contrary to the observed 
pattern in Figs. 2 and 3.  

In conclusion, phonetic contrast is a major 
determinant of early detection vs. late detection vs. 
non-detection of segmental speech errors in self-
monitoring. We also conclude that "cognitive 
control" as a mechanism that prevents or repairs 
segmental errors is not triggered by conflict between 
competing response candidates, but rather by error 
detection.  

26. Phonetic Psycholinguistics ID: 226

4031



5. REFERENCES 

[1] Levelt, W.J.M. 1989. Speaking:  From intention to 
articulation. MIT Press. 

[2] Hartsuiker, R. J., Kolk, H. H. J. 2001. Error monitoring 
in speech production: A computational test of the 
perceptual loop theory. Cognitive Psychology 42(2), 
113–157. 

[3] Nozari, N., Dell, G. S., Schwartz, M. F.  2011. Is 
comprehension necessary for error detection? A 
conflict-based account of monitoring in speech 
production. Cognitive Psychology 63(1), 1–33. 

[4] Nooteboom, S.G. 1973. The tongue slips into patterns. 
In: V.A. Fromkin (ed) Speech Errors as Linguistic 
Evidence. Mouton, 144–156. 

[5] Dell, G. S. 1986. A spreading-activation theory of 
retrieval in sentence production. Psychological Review 
93(3), 283–321. 

[6] Baars, B. J., Motley, M.T. 1974. Spoonerisms: 
Experimental elicitation of human speech errors. 
Catalog of Selected Documents in Psychology 3, 28–
47. 

[7] Nooteboom, S.G., Quené, H. 2008. Self-monitoring 
and feedback: a new attempt to find the main cause of 
lexical bias in phonological speech errors. J. Memory 
and Language 58(3), 837–861.  

[8] Nooteboom, S.G., Quené, H. 2013. Parallels between 
self-monitoring for speech errors and identification of 
the misspoken segments. J. Memory and Language 
69(3), 417–428. 

[9] van Alphen, P.M., Smits, R. 2004. Acoustical and 
perceptual analysis of the voicing distinction in Dutch 
initial plosives: the role of prevoicing. J. Phonetics 
32(4), 455–491. 

[10] Cutler, A., Weber, A., Smits, R., Cooper, N. (2004). 
Patterns of English phoneme confusion by native and 
non-native listeners. J. Acoust. Soc. Am. 116(6), 3668–
3678.  

[11] Nooteboom, S.G., Quené, H. 2017. Self-monitoring 
for speech errors: Two-stage detection and repair with 
and without auditory feedback. J. Memory and 
Language 95, 19–35. 

[12] Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E. 
2016. mclust 5: clustering, classification and density 
estimation using Gaussian finite mixture models. R 
Journal 8(1), 289–317. 

[13] Fraley, C., Raftery, A.E. 2002. Model-based 
clustering, discriminant analysis and density 
estimation. J. Am. Statistical Assoc. 97, 458, 611–631. 

[14] R Core Team. 2022. R: A Language and Environment 
for Statistical Computing. R Foundation for Statistical 
Computing. https://www.R-project.org/ 

[15] Bürkner, P.-C. 2017. brms: An R Package for 
Bayesian Multilevel Models Using Stan. J. Statistical 
Software 80(1), 1–28 

[16] Bürkner, P.-C. 2018. Advanced Bayesian multilevel 
modeling with the R package brms. R Journal 10(1), 
395–411. 

[17] Makowski, D., Ben-Shachar, M.S., Lüdecke, D. 2019. 
bayestestR: Describing effects and their uncertainty, 

existence and significance within the Bayesian 
framework. J. Open Source Software 4(40), 1541. 

[18] McElreath, R. 2020. Statistical Rethinking: A 
Bayesian Course with Examples in R and Stan (2nd 
ed.). CRC Press. 

 

26. Phonetic Psycholinguistics ID: 226

4032


