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ABSTRACT

The study investigates variation of two voice quality
features (smoothed cepstral peak prominence and
the relative strength of the fundamental) preceding
speaker changes and turn holds in spontaneous
conversations in Swedish and German. We
demonstrate that the overall pattern is to a large
extent linked to the syllabic structure in speech.
While speech before turn holds is characterised
by more periodic phonation than before speaker
changes, the effect sizes are very small and are
unlikely to be of practical importance for speech
communication. We observe no evidence in favour
of language specificity of the reported contrasts.
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1. INTRODUCTION

The speech signal is rich in linguistic and
paralinguistic information [1], including prosodic
patterns related to coordination of turn-taking in
conversation [2, 3]. However, studies of prosodic
turn-taking cues rarely include properties related to
voice quality (i.e. phonation type), in spite of a
growing body of evidence for the importance of
voice control to prosodic expression [4, 5, 6]. This
state of affairs can to a large extent be explained
by the difficulty of studying the voice source
in spontaneous speech, where inverse filtering of
supraglottal resonances is either prohibitively time
consuming or error-prone [7].

Existing work has thus relied primarily on
manual annotations of specific voice quality types
(e.g. creak [8]) or acoustic analysis of the raw
audio signal [9], often using features which are
difficult to interpret when calculated from connected
speech, such as jitter or shimmer [3, 10]. The
methodological differences notwithstanding, this
line of research has found that speech preceding
speaker changes is less periodic and more creaky
than in turn-holds.

More recently, [11] revisited the question of
phonatory turn-taking cues using a signal collected
with miniature accelerometers attached to speakers’
tracheal wall below the larynx. The method is
simple to use, noninvasive and can be used to
estimate voice source parameters [12, 13, 14]. It
has also showed promise for classification of voice
quality [15], although it might offer little advantage
over the microphone signal in highly controlled
speech [16].

[11] used the method to analyze several voice
quality parameters (harmonicity, strength of the
fundamental and spectral balance) extracted from
the last voiced interval preceding turn-taking events.
They found that, in line with previous research,
speaker changes accompanied by silence were
characterised by less modal phonation than turn
holds. In addition, they demonstrated that while
some voice quality features did help to distinguish
between the categories, their contributions were
limited when compared to that of intensity level and,
to a lesser extent, fundamental frequency ( fo).

An obvious limitation of the analysis in [11] is
that it was based on averages calculated over the
last voiced interval in a talkspurt. Thus, it failed to
account for variability of the parameters in question
over time. In this paper, we remedy this shortcoming
by analysing the dynamical properties of voice
quality using Generalized Additive Mixed Models
(GAMM). By including two languages (German
and Swedish), we address the question of language-
specificity of voice quality variation.

2. METHOD

2.1. Material

The material consisted of seven dyadic
conversations in Swedish and four in German.
The participants (8 males and 14 females) were
instructed to talk with each other on a topic of
their choice for about 30 minutes (mean durations:
28 and 30 minutes for the German and Swedish
conversations, respectively). All participants knew
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each other before the recording. The recordings
were made in sound treated rooms at Stockholm
University and Bielefeld University. In addition
to audio recordings using regular microphones,
participants’ vocal activity was also recorded with
miniature accelerometers (Knowles BU-27135)
attached to the neck below the level of the glottis.

2.2. Feature extraction

For Swedish, talkspurts were identified from
the audio recordings using the voice activity
segmentation method proposed in [17]. For German,
due to strong crosstalk between the channels,
talkspurts were labelled manually by a student
assistant. Each silence was then automatically
classified as either within- or between-speaker
(henceforth, WSS and BSS), depending on whether
it was associated with a speaker change (BSS) or a
turn-hold (WSS). Given that very short utterances
correspond largely to backchannels [18], WSS and
BSS intervals in which the talkspurt preceding the
silence was shorter than one second were excluded
from the analysis.

The following voice quality features were
extracted from voiced frames (50 ms in length with
2 ms step, Gaussian window) in the accelerometer
signal:

Smoothed cepstral peak prominence (CPPS):
amplitude of the first rahmonic relative to the
regression line over the power cepstrum, in
dB [19] characterising the periodicity of the
signal.

L1L2: characterising the strength of the
fundamental relative to the second harmonic
and/or spectral slope in the low frequency part
of the spectrum: L1 −L2, in dB.

Given that voice source parameters vary
significantly as a function of subglottal pressure
and sound pressure level [20], intensity level (in
dB) was also computed. Feature extraction was
performed with Praat [21], identical to that in
[11], except for the fact the same (default) voicing
threshold was applied to fo-dependent (L1L2) and
and fo-independent (intensity level, CPPS) features.

Voiced intervals of at least 20 ms were identified
based on the output of Praat’s pitch tracking. Next,
the last voiced interval in the final second of
each talkspurt was found, the CPPS, L1L2 and
intensity level trajectories were interpolated with
cubic splines (without smoothing) and sampled at 15
evenly spaced points. Frames that included pitch-
halving errors were removed. If this procedure

resulted in a loss of more than 10% of frames in a
voiced interval, the entire interval was excluded.

Only intervals longer than 78 ms (corresponding
to the minimum of 15 50-ms frames with a 2-ms
step) in which all the feature values were within
three standard deviations of speaker’s mean were
included in the final analysis. Additionally, data
from one Swedish speaker were excluded due to
evidence of strong pitch halving. The final data set
consisted of: 234 BSS and 649 WSS intervals in
Swedish, and 384 BSS and 618 WSS intervals in
German.

2.3. Modeling

The data were modeled using Generalized Additive
Mixed Models (GAMM, [22]) using the mgcv
package in R [23]. Separate models were fitted for
each response variable (intensity level, CPPS, L1L2).
The following model structure was used, using the
mgcv::formula.gam syntax (s: smooth term, te:
tensor product smooth, bs=’fs’: factor smooth):

Y ~ s(time) +
s(time, by=is.swe) +
s(time, by=is.wss) +
s(time, by=is.swe.wss) +
te(time, voiced.dur) +
s(time, speaker, bs=’fs’, m=1) +
s(time, speaker, by=is.wss.ord,

bs=’fs’, m=1)

The models included effects for language (is.swe)
and interval type (is.wss) as well as for the
difference between the BSS/WSS contrast across
the two languages (is.swe.wss). Since we
have no specific hypotheses about contour shapes
as opposed to the overall level, we use binary
difference smooths [24]. They combine both of
these differences and do not result in inflated type-
I error rates associated with separate tests for the
parametric and the non-linear components [25].
In addition, the models included a tensor product
interaction between time and the duration of the
voiced interval (voiced.dur, in log2(s)), as well as
random smooths for speakers (speaker), grouped
by interval type (is.wss.ord, modelled using a
reference and random difference smooths, following
the recommendation in [25]).

All the models were fitted with the mgcv::bam
function, using fast restricted maximum likelihood
estimation (fREML) and discretization of covariate
values (i.e. with the discrete parameter set to
true). A scaled t model (family = ’scat’) was
used to deal with non-linearity of the residuals.
Autocorrelation in the data was controlled for with a
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first-order auto-regressive model (AR1), with ρ set
to autocorrelation at lag of one in a model without
the AR1 component.

Secondary data and the scripts used in the analysis
are available at: https://doi.org/10.5281/zenodo.
7870015.

3. RESULTS

The predicted curves for intensity level, CPPS and
L1L2 are shown in Figure 1.

The observed intensity effects reflect the expected
patterns associated with syllabic organisation in
speech: intensity level increases at the beginning of
the voiced interval and falls again towards its end.
Indeed, median duration of the voiced interval was
equal to 0.2 seconds, which corresponds roughly
to average syllable duration in speech. The end
point is somewhat lower than the start point, most
likely corresponding to energy declination across
prosodic phrases. The difference between German
and Swedish was significant for the reference BSS
category (p < 0.001). Visual inspection of Figure 1
as well as of the difference smooth indicates that the
curve for Swedish is somewhat lower (by about 2
dB) and shows a more gradual decrease of intensity
throughout its duration, as opposed to the German
curve, which decreases more sharply towards its
end. Neither the BSS/WSS contrast in German (p =
0.09) nor the difference in marking of the contrast
across the languages (p = 0.6) were significant.

CPPS mirrors the inverted-U pattern present in the
intensity curves, reflecting the fact that centers of
syllabic nuclei are characterised by more periodic
phonation than the peripheries. We found no
evidence for a difference in the BSS category across
the languages (p = 0.7). The BSS and WSS
intervals differed significantly for German (p <
0.001): within-speaker silences were characterised
by higher CPPS values in the middle portion of
the voiced interval. However, the difference curves
reveal that this difference is very small (less than
1 dB). There was no evidence that the BSS/WSS
contrast is realised differently in Swedish (p = 0.4).

L1L2 shows the opposite pattern to intensity
level and CPPS with low values in the middle
of the voiced interval and high values towards
the edges. This is again expected given that a
strong fundamental (and, consequently, high L1L2)
is indicative of more breathy phonation. The
language effect for the BSS category was significant
(p < 0.001): the curve for Swedish is somewhat
higher and is characterised by a less steep increase
towards the end. The BSS/WSS contrast in German

was also significant (p= 0.02), with lower values for
WSS intervals but, similar to CPPS, the difference
was smaller than 1 dB on average. We found
no evidence for language-specific difference with
respect to the BSS/WSS effect (p = 0.7).

4. DISCUSSION

This paper is part of project where we are exploring
voice quality as a dimension of prosodic expression,
following the voice prosody hypothesis [4, 5, 6].
Our approach has been to examine short-term
variations in acoustic voice quality features as
correlates of various prosodic functions (e.g. turn-
yielding, turn-holding, and word and utterance level
prominences). To avoid the difficulties in estimating
voice quality features from running speech, we
have based our features on signals from miniature
accelerometers attached to the speaker’s neck below
the level of the glottis where the influence of the
vocal tract is minimal.

The results presented in this work indicate that
voice quality varies over syllable-sized units roughly
in the same way as intensity level. The middle part
of the last voiced interval was associated with higher
intensity level and, consequently, more periodic
phonation, indicated by higher CPPS and lower
L1L2. This effect is present in both languages and
regardless of the different segmentation methods
employed in the two data sets.

The other effects investigated here, although
present, are very small and did not vary across
languages. In line with previous research [8, 9, 11],
between-speaker intervals were characterised by
less periodic phonation (lower CPPS, higher L1L2)
but the differences were below 1 dB, on average.
However, it is possible that the feature extraction
methods employed, and in particular the removal of
frames with pitch-halving, reduced the influence of
creak on the results. Thus, the role of creak as a turn-
taking cue might be greater than indicated by our
results. It is also conceivable that the the BSS/WSS
contrast is realised differently as a function of the
duration of the last voiced interval, or depends on the
duration of the talkspurts, with greater aperiodicity
being more likely towards the end of longer turns
[26]. Finally, voice quality cues might be employed
over larger temporal domains than the last voiced
interval of a talkspurt. We leave these questions
open for future research.

Of all the features investigated here, intensity
level showed the least amount of separation across
the between and within-speaker categories. This
stands in stark contrast to the results in [11],
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Figure 1: Model predictions for intensity level (top), CPPS (middle) and L1L2 in Swedish (left) and German (right)
for between-speaker and within-speaker silences (BSS and WSS, respectively).

where intensity made the biggest contribution to
discriminating between turn-taking categories. This
could be partly explained by the fact that intensity
level (as well as other fo-independent features)
in [11] included values extracted from intervals
detected with a lower voicing threshold in order
to capture even less periodic phonation types (this
procedure was not used in the present study to
produce time-aligned trajectories for fo-dependent
and fo-independent features). Such intervals, which
involve very breathy or creaky voice quality, are
likely to be much quieter than the voiced intervals
investigated here. Furthermore, the analysis in
[11] did not control for covariates such as interval
duration and did not model the grouping structure in
the data.

The fact that the CPPS and L1L2 curves in
Figure 1 exhibit greater separation across the

BSS/WSS classes might suggest that voice quality
does in fact carry non-redundant information related
to turn-taking. Similarly, while the shape of the
L1L2 contour is essentially a mirror image of the
intensity level curve, the CPPS shows a more
distinct, symmetrical pattern, possibly indicating
that CPPS is to a less extent determined by sound
pressure level (and subglottal pressure) variation.
Nonetheless, given the small effect sizes, the effects
are most likely of little practical importance in
speech communication.
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