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ABSTRACT

In-person assessment of teaching emotion as part of a
teacher’s working performance evaluation is onerous, and
can be intrusive to some teachers in teaching. This study
shows preliminary attempts at solving this issue using a
machine learning approach with bi-modal artificial neural
networks, which made predictions by combining acoustic
and textual features extracted from preschool teachers’
spontaneous speech captured in real teaching scenarios.
In a binary classification task identifying the emotions
as “positive” and “negative”, the prediction achieved
an accuracy of 79.0%, an F1-score of 83.1% in cross-
validation, and an accuracy of 68.4%, an F1-score of
67.2% in leave-one-subject-out validation. When further
adding speech samples identified as “neutral” to the task,
a decreased accuracy of 52.4% and F1-score of 53.6%
were received in cross-validation, confirming the difficul-
ties in labelling this type of naturalistic speech data even
for human raters.
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ral network, acoustic features

1. INTRODUCTION

Emotions are prominent aspects of human experiences
and play a defining role in social interactions. Rat-
ings of human emotion have been used in various de-
velopmental [1], educational [2], and health research
studies. These ratings involve observing, interpreting,
and coding expressed emotions, which are explicitly or
implicitly expressed during interactions between teachers
and students in the classroom and invoked in the raters.
Emotion ratings are also used in policy decision-making,
such as the Emotional Support domain of the Classroom
Assessment Scoring System [3], which is a determinant
of funding allocations for the largest federally funded
preschool program, Head Start, in the United States.
However, there is ample evidence that raters frequently
disagree [4, 5]. A possible reason for such disagreement
is cultural and language diversity. A cross-language and
cross-cultural study of a listener’s capability to identify
emotion using acoustic cues [6] showed that both uni-
versal and language-specific cues of emotion expressions
affect emotion identification in an unfamiliar language
and culture. However, established rating systems have
not successfully addressed this issue.
Systems and algorithms using audio information have

been developed to assist in identifying and recognising

human effects efficiently, such as emotions, sincerity,
irony and deception from linguistic and paralinguistic in-
formation extracted from physical speech signals [7, 8, 9].
For speech emotion classification, early studies have used
Gaussian mixture models and Hidden Markov models to
learn the acoustic feature distribution, and used Bayesian
classifier and support vector machine (SVM) classifier
to categorise emotions [10, 11]. In recent years, deep
neural networks have demonstrated better performance
on the acted database IEMOCAP, and end-to-end mod-
els combining Convolutional Neural Networks with long
short-term memory have been reported to outperform the
traditional approaches on the naturally elicited database
RECOLA [12, 13]. Despite many studies on emotion
classification, there is limited work on detecting teachers’
teaching emotions, especially from spontaneous speech
captured in classrooms. With a Recurrent Neural Net-
work, Liang et al. [14] achieved an accuracy of 85.3% in
a teaching emotion recognition task on aMandarin speech
corpus, for which teaching scenarios were simulated us-
ing professional voice actors under specific instructions.
Cen et al. [15] trained an SVM model for detecting the
emotions of students during online learning. This model
combined the probabilities of finer emotion categories to
predict “positive” (“happy”) and “negative” (“sad” and
“anger”) emotions in one speech utterance.
Developing a machine-aided rating system for teach-

ers’ teaching emotions is significantly meaningful, be-
cause it may provide more objective and consistent as-
sessment for teachers from different cultural and racial
backgrounds, reducing biased feedback and subsequent
unfair treatment due to insular individual opinions. It
could alleviate the mental stress on some teachers, who
are sensitive to their working ambience and audience,
due to the presence of their performance evaluator(s).
When relying on computer coding of teachers’ basic
emotions, raters can focus on higher-level constructs (e.g.
responding and instructing).
In this study, we examine the feasibility of applying

ML techniques to recognising teaching emotion from
teachers’ spontaneous speech as an essential step towards
investigating how culturally-specific acoustic signatures
are associated with teaching emotions. As opposed to
elicited emotional speech used in many previous studies,
we work on natural utterances captured when teachers
were conducting ordinary teaching activities in preschool
classrooms in the United States, in order to obtain an
ecologically-valid assessment of machine performance.
Instead of proposing novel ML algorithms or using so-
phisticated ML techniques to address the problem, we
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focus on obtaining a benchmark to inform future studies.

2. METHOD

2.1. Speech data

The speech recordings used in this study were drawn
from the EMOtion TEaching Rating Scale (EMOTERS)
dataset [16]. This corpus is primarily used to assess
teachers’ emotion-focused teaching practices, which sup-
port children’s social and emotional development and
school readiness. It contains 1,606 10-minute (ap-
prox. 268 hours) realistic spontaneous speech recordings
with human-coded emotion labels. The original record-
ings include both video and audio recordings; only audio
signals were extracted for analyses in this study. Due
to the original audio being saved in MP3 format, some
acoustic information had no longer been preserved in the
files. Constrained by the data sharing protocol, out of the
1606 recordings in the original dataset, we could only
access 31 recordings (approximately 5 hours) from 11
teachers (9 females and 2 males) for this study.
During data preparation, the over 5-hour recordings

were segmented into small excerpts based on the teacher’s
conversational turns, as most speech emotion recognition
tasks are developed and evaluated on utterance-level data
[17]. This process resulted in 1570 speech excerpts
in total, among which 540 excerpts were used as the
samples for the subsequent experiments. Other excerpts
were discarded due to the target voice being mixed with
other unintended sounds (e.g. children’s voices and
background noise) to different degrees. All the excerpts
were primarily coded into “positive” (POS) or “negative”
(NEG) individually by three raters: two native American
English speakers and one Chinese English speaker. If the
emotion in a sample was not obvious to the rater, this sam-
ple was labelled as “neutral” (NEU). Of the 540 samples,
261 (48%) were labelled consistently across the raters;
134 (25%)were labelled the same by any two raters, while
there was no consensus at all (i.e. the three raters had
totally different opinions) for 145 samples (27%). The
final label for a sample was the one rated by the majority
of the raters (i.e. rated the same by at least two raters);
the 145 samples without agreement were merged to NEU,
leading to 206, 147 and 187 samples for POS, NEG and
NEU, respectively as in Table 1. The labelling results
suggested the human raters were indecisive between POS
and NEG for over 1/3 of the samples.

2.2. Feature preparation

Previous studies [18, 19, 20] suggested that humans can
encode and show their emotions using both linguistic
(via word choice) and acoustic (via vocal configuration)
means. To exploit both acoustic and textual proper-
ties from teachers’ vocalisation, acoustic measurements
and bag-of-words representation were extracted from the
speech samples.
There is a wide range of acoustic feature sets available

for speech-related identification and analysis tasks, e.g.
eGeMAPS [21], ComParE [9], YAAFE [22]. Most of

Table 1: Teacher sex and rated emotion (“POS”, “NEG”,
“NEU”) distribution of the samples

Teacher Gender No. of Samples POS NEG NEU
1 Female 15 9 2 4
2 Female 100 50 17 33
3 Female 29 15 4 10
4 Female 85 34 23 28
6 Female 49 18 14 17
5 Female 27 6 11 10
7 Female 79 27 10 42
8 Female 54 21 15 18
9 Female 18 12 4 2
10 Male 21 8 6 7
11 Male 63 6 41 16
total: 540 206 147 187

these feature sets calculate different dimensions of low-
level temporal and spectral descriptors (LLDs) from 10-
20 ms speech frames. A non-exhaustive list of the LLDs
is shown below:

• Energy: intensity, loudness
• Pitch: F0, voicing probability, F0 contour
• Voice quality: jitter, shimmer and logarithmic
harmonic-to-noise ratio

• Spectral shape: Mel-Frequency Cepstral Coeffi-
cients, Perceptual Linear Predictive coefficients.

• Temporal dynamics: 1st-order differential and 2nd-
order acceleration coefficients

High-level statistics functions are then derived based
on the LLDs for the global utterance, including max,
min, mean, the slope of linear approximation, skewness,
kurtosis and more. We chose the ComParE feature set,
which was designed for the Computational Paralinguis-
tics Challenge and has been used in many speech emotion
recognition tasks, such as [7]. Therefore, it was con-
sidered a reasonable starting point to obtain a baseline
performance on the current speech data. Since ComParE
extracts many possible features for a general purpose, a
total of 6373 acoustic features was calculated from each
speech sample. We assumed that many features in the
ComParE set might overlap in terms of useful information
they provide for classification tasks. Initial experiments
suggested that reducing the feature dimensionality from
6737 to 162 explaining 90% of the variance in the data
using Principal Component Analysis led to a similar
machine performance as when all 6373 features were
used. Therefore, only the first 162 principal components
were supplied as acoustic features to the downstreamML
algorithm to expedite training and prediction.
As for textual features, the transcriptions of the 540

samples were processed into 2447 unique words. The
number was further reduced to 378 by removing the
low-frequency words (which occurred only once in the
dataset) to avoid noise interference. As a result, the
textual model took the 378-dimension bag-of-words rep-
resentation as its input features.

2.3. Model Structure and evaluation

We trained four uni-modal models using acoustic features
or textual features separately to construct a baseline for
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Figure 1: The structure of the bi-modal ANNmodel: acoustic
and textual features were fed into two linear layers separately,
then the outputs were concatenated before being fed into the
output layer. The number of neurons in each layer is noted.

comparison. The first two classifiers were trained by a
kernelised SVM with the radial basis function. The other
models were trained as standard feedforward Artificial
Neural Networks (ANN) with two hidden layers of 64
and 32 neurons towards the output layer. The Rectified
Linear Unit (ReLU) was used as the activation function
at each hidden layer, and a sigmoid or softmax function
was used for the output layer depending on whether the
task was binary or three-class classification. For a given
ML algorithm, all the model specifications were the same
for both the acoustic and textural features, except that the
input size of the former was 162 (principal components)
while that of the latter was 378 (words).

A bi-modal ANN was further trained to combine the
textural and acoustic information. As shown in Figure 1,
the 162 acoustic features were fed through two hidden
layers with ReLU as the activation function, resulting in
a 32-dimension vector for each sample as the output of
the second hidden layer. Meanwhile, the textual features
were fed through another two hidden layers, also resulting
in a 32-dimension vector. Then, the vectors from the
two modalities were concatenated and fed into the output
layer. We expected the model to be informed of more
information by combining the two kinds of features, lead-
ing to better predictive performance than the uni-modal
models. To obtain a benchmark performance on this
data set, no hyperparameter-tuning was performed on the
models; all model parameters were empirically chosen.

Having observed the difficulties the human raters en-
countered during the rating process, we evaluated the
model performance in two tasks: a binary (POS vs NEG)
classification and a three-class classification including all
three emotional categories (POS, NEG and NEU). Model
performance was evaluated as accuracy and F1-score.
Since the dataset was relatively small, a 5-fold cross-
validation (CV, teacher-dependent) was employed to as-
sess the overall predictive power of each model, along
with leave-one-subject-out (LOSO, teacher-independent)
CV for testing the model generalisability across teachers.
During LOSO CV, the model each time was trained on
the samples from 10 teachers and the samples from the
remaining teacher were reserved for testing.

3. RESULTS

3.1. Uni-modal baselines

Table 2 presents the average performance of the 5-fold CV
on the uni-modal models trained using SVM and ANN
with different types of features in the binary classification
task. Overall, the ANN models outperformed SVMmod-
els in both modalities, and the models trained using the
acoustic features outperformed the models trained using
the textural features.
Table 3 shows the performance of LOSO CV of the

uni-modal models trained on acoustic or textural features.
For the 11 teachers, the number of samples considerably
varied across individuals from 11 to 57, with an average
of 31 samples. Since the dataset was created from a
spontaneous speech corpus, the imbalanced distributions
in sample number and emotion class across teachers were
inevitable at the preliminary stage. Compared to the per-
formance in the early teacher-dependent evaluation, both
the model using the acoustic features and the model using
textual features were seen to decrease by approximately
10.6 and 12.2 percentage points (ppts) respectively in ac-
curacy, and 15.4 and 14.6 ppts in F1-score. Nevertheless,
the acoustic model (64.3%) still exhibited a somewhat
more robust performance than the textural model (60.7%)
in terms of accuracy, but otherwise similar measured as F-
score. Since the sample distribution was imbalanced, the
weighted average scores (weighted by the sample number
for each teacher) are also shown in Table 3.

3.2. Bi-modal model

As illustrated in Figure 1, the bi-model uses both the
acoustic features and textural features for making pre-
dictions. The last row of Table 2 shows the CV per-
formance of the bi-modal ANN model when identifying
POS and NEG samples in the teacher-dependent task.
As anticipated, the bi-modal ANN achieved a higher
accuracy of 79% and F1-score of 83.1% than the best
uni-modal model, i.e. “ANN-acoustic” with an accuracy
of 74.9% and F1-score of 79.5%. The last two columns
of Table 3 display the LOSO CV performance of the bi-
modal ANN model. While teacher-independent models
exhibited decreased performance compared to the uni-
modal models, the bi-modal model still outperformed the
textual and acoustic models in weighted accuracy, and
showed a better balance between the two performance
metrics, suggesting a better generalisability than the uni-
modal models.
Table 2: Uni-modal and bi-modal model accuracy and F1-
score on binary classification (POS vs NEG). Metrics in
percentage are calculated across 5-fold cross-validation

Model Accuracy (%) F1-score (%)
SVM-text 67.3 76.9
SVM-acoustic 70.4 78.8
ANN-text 72.9 78.1
ANN-acoustic 74.9 79.5
Bi-modal ANN 79.0 83.1
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Table 3: Model accuracy and F1-score in LOSO CV for binary classification (POS vs NEG). Both mean performance across teachers
and mean further weighted by the number of samples are also presented. Teachers marked by “*” are males.

Teacher No. of Samples ANN-acoustic ANN-text Bi-modal ANN
Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

1 11 63.6 70.2 54.5 66.7 72.7 80.1
2 67 61.3 66.2 64.5 68.4 69.4 74.0
3 19 63.2 53.0 57.9 56.4 68.4 55.9
4 57 64.9 72.3 56.1 57.4 64.9 61.4
5 32 75.0 80.3 62.5 71.3 78.1 77.3
6 17 76.5 74.0 64.7 69.5 70.6 76.8
7 37 71.9 68.7 68.8 60.0 78.1 67.7
8 36 47.2 61.1 52.8 69.0 50.0 56.9
9 16 62.5 65.0 75.0 79.9 81.3 74.0
10* 14 64.3 70.6 64.3 71.0 57.1 66.7
11* 47 57.4 24.0 46.8 29.4 61.7 48.6
Mean 31 64.3 64.1 60.7 63.5 68.4 67.2
Weighted mean 63.5 62.6 59.8 60.9 67.7 65.6

3.3. Three-class classification

When further adding speech samples identified as neutral
(NEU) to the classification task, the accuracy of the
acoustic and textual uni-modal ANNs, and bi-model ANN
decreased by 27.9, 24.4 and 25.4 ppts; the F1 shrunk
by 33.1, 29.0 and 29.6 ppts, respectively. The predic-
tive power of the textual uni-modal ANN appeared to
deteriorate more severely than the acoustic-only ANN.
Despite the lower performance compared to the binary
classification, the bi-modal ANN held its marginal lead
in the three-class classification over the uni-modal mod-
els. Figure 2 compares the 5-fold teacher-dependent CV
performance of all models tested above. Unless specified
as “3-class”, themodel is for the binary classification task.
As shown in the figure, the bi-modal ANN outperformed
the uni-modal models in both the binary and the three-
class classification tasks.

4. DISCUSSION AND CONCLUSION

This study used a bi-modal ANN that combines acoustic
and textual features extracted from spontaneous speech
to recognise teachers’ teaching emotions in preschool
classrooms in the United States. In the binary classi-
fication task, the bi-modal ANN achieved an accuracy
of 79.0% and an F1-score of 83.1%. In all the tasks
including three-class classification (POS, NEG and NEU)
and LOSO CV, the bi-modal model outperformed the
uni-modal models, which only used acoustic features or
textural features. The more robust performance of the
uni-modal model using acoustic features, especially in
the three-class classification task, could suggest that some
emotions are better encoded in teachers’ vocalisation than
in the vocabulary they usewhile talking. The reduced pre-
dictive power in the three-class classification task shows
that theMLmodels employed in this study cannot account
for the uncertainties in ratings due to human raters’ differ-
ent perceptions and cultural backgrounds. Further using
fine-tuned models and more advanced ANN architectures
could better capture the subtle nuances encoded in teach-
ers’ speech and can help differentiate emotions, which
may explain the better machine performance reported in
the literature. Though the performance falls behind Liang

Figure 2: Teacher-dependent CV comparison among models

et al. [14], it should be noted that the database in their
study was recorded by six male and six female teachers on
five balanced emotions, resulting in a potentially higher
probability for more robust classification. Other factors
such as sample size, audio quality and features used may
have also affected the machine performance in this study.
Gent et al. [23] compared the machine performance
in irony recognition from speech when using a set of
refined acoustic features to using the entire CompPare
set, and argued that a robust performance comes from
the relevance of the features, not the quantity. Further
detailed acoustic analyses on this type of spontaneous
speech could help identify a set of more representative
features for recognising teaching emotions.
As the preliminary study, this work tested the feasi-

bility of using a machine learning-based approach to aid
in the emotion-based assessment of preschool teachers’
teaching performance. It can also provide a benchmark
for automatic emotion detection from speakers’ vocalisa-
tion acquired in realistic situations.
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