
TOWARDS SPEAKER-INDEPENDENT ULTRASOUND TONGUE 
IMAGING-BASED ARTICULATORY-TO-ACOUSTIC MAPPING

XXXXXX

XXXXXXXX

ABSTRACT

In this paper, an articulatory-to-acoustic mapping
task is studied, which aims to predict the mel-
spectrogram of the audio signals using midsagittal
ultrasound tongue images of the vocal tract.
Despite of sustainable efforts been made, most
previous attempts have been constrained to the
speaker-dependent scenario, and the performance
is greatly decreased for unseen speakers. Here,
a novel approach is proposed for the speaker-
independent scenario, using domain-adaptation and
adversarial learning. To validate the performance of
proposed method, objective evaluation is conducted
to demonstrate the effectiveness of the proposed
method. The quantitative results indicate our
method can achieve superior performance.

Keywords: Ultrasound tongue imaging,
articulatory-to-acoustic mapping.

1. INTRODUCTION

In the natural speech production process, the
speech signal is highly related to articulation.
Understanding the association between the
articulation and the speech signals not only
can be helpful to improve our understanding
of speech production but also can stimulate the
theoretical development of speech recognition.
There is an increasing trend that aims to build
the articulatory-to-acoustic mapping [1] as the
applications of the mapping seem to be evident,
such as the silent speech interface (SSI) [2] which
has a long-term goal to generate the speech using
the soundless articulatory information.

Previous attempts employed statistical methods
[3] for the inversion between the articulatory
movements and speech, while deep learning has
begun to dominate this field [4]. For example, [5]
explored a two-layer deep neural network for the
inversion task, and satisfying performance can be
obtained. Despite the sustainable efforts that have

been made [6], the mapping performance can be
greatly varied for different speakers and most of the
previous methods are constrained for the speaker-
dependent scenario. In this paper, we present a novel
approach towards speaker-independent mapping,
which is inspired by the domain adaptation
method. Specifically, we explore decoupling the
speaker spectral generation task and the speaker
recognition task. Leveraging a novel designed
loss function, we can improve the performance
under the speaker-independent scenarios, through
adversarial learning. Our code is available
at: https://github.com/xianyi11/Articulatory-to-
Acoustic-with-Domain-Adaptation.

2. RELATED WORK
The early studies on articulatory-to-acoustic
mapping usually employ low-order spectral
representations of speech as the target, such as [7]
using 12 coefficients. Later, [8] used other spectral
features which has 25-dimensional to handle the
articulatory-to-acoustic mapping task. Recently,
[9] used a large-scale pre-trained model WaveGlow
[10] to predict more detailed representations (80-
dimensional mel-spectrogram) from ultrasound
tongue images (UTI), resulting in more accurate
models. However, to the best of our knowledge,
many of previous attempts try to solve the task in a
speaker-dependent manner, while the performance
is greatly decreased for the speaker independent way
(i.e., unseen speaker). There are just a few studies
on the speaker-independent articulatory-to-acoustic
mapping. Motivation by the shortcomings, we
mainly focus on the speaker-independent scenarios.

3. METHODOLOGY

3.1. Overall design

In Figure 1, we present the overall flowchart of the
proposed method. Our approach consists of two
main parts: the first part is a convolutional neural
network for the feature extraction from the UTI,
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Figure 1: Overall flowchart of the proposed method for the articulatory-to-acoustic mapping using UTI.

and the latter part is designed for the estimation
task. To improve the generalization ability across
different speakers, we decouple the latter part into
two branches, one branch for the generation task
and the other is for the speaker discrimination.
For the joint training, a novel designed loss is
explored to train the network through adversarial
learning. Compared to the method without speaker
discrimination and adversarial learning, our method
can improve the prediction performance under the
speaker-independent scenarios. The components
will be explained in more detail subsequently.

3.2. Mel-Spectrogram Prediction

The UTI contains the deformation information of
the vocal tract during natural speech production.
Intuitively, we could predict the sound from the
ultrasound image by the high-dimensional non-
linear transformation. Thereby, an ultrasound
video could be mapped to the continuous speech
spectrogram in Mel-scale through the framewise
prediction. Specifically, we build the mapping using
a multi-stage deep neural network. The predicted
Mel-spectrogram ŷi could be acquired by:

(1) ŷi = uT
i ϕ(x).

where ϕ is the backbone neural network which
is parameterized by θϕ , and x ∈ RH×W is
the ultrasound tongue image. The weights of
spectrogram prediction network M can be noted as
u, where ui is the ith weight vector. The loss function
applied for this generation task is the mean-squared
error (MSE):

(2) LM =
1
M

M

∑
i=0

(yi − ŷi)
2,

where M is the number of Mel-bins in the
Mel-spectrogram, y is the ground-truth of the
spectrogram.

3.3. Speaker Discrimination

The speaker information and the speech content
are naturally coupled in the ultrasound image and
spectrogram. In order to make our system irrelevant
or weakly dependent to the speaker information, it is
necessary to decouple the speaker information and
the speech content. We set up a shallow speaker
discrimination network S which is parameterized
by θS to recognize the speaker from the ultrasound
image:

(3) ŝi = vT
i ϕ(x).

where the weights of network S are denoted as v,
and vi is the i-th weight vector. Note that, during the
update of network S , the weights of network M are
fixed, so as to avoid the impact of the cross-modal
mapping process. The loss function for learning
speaker information is the Cross-Entropy loss:

(4) LS =− log
esi

∑
K
j esi

,

where i is the speaker index, and K is the number of
distinguishable speakers which will be explained in
detail in Sec.4.

3.4. Adversarial Training

After the network S converges, the feature ϕ(x)
output from the backbone network ϕ is speaker-
dependent, because after the shallow non-linear
transformation, the speaker could be recognized.
We hope the feature ϕ(x) has better generalization
ability across different speakers, rather than close
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to the target speaker. We implement this in an
adversarial way by decreasing the −LS in the
speaker discrimination learning process. The final
loss for spectral feature prediction is calculated by:

(5) L = LM −λLS,

where λ is the empirical weight which will be
investigated in Sec.4.3. The parameters θS of
the speaker discrimination network is frozen in the
adversarial training.

4. EXPERIMENTAL RESULTS

4.1. Dataset and Implementation Details

The Ultrasuite [11] dataset is used throughout the
experiments. These children suffer from speech
sound disorders (SSD) to varying degrees. UXTD
is the typically developing subset of the Ultrax
dataset which contains 58 individuals (31 females
and 27 males). The ultrasound framerate is 121.5
FPS. We down-sample the frames by 10 (for every
second, we sample 12 frames due to the constraint
of the computation resources). For the backbone
neural network, we employ ResNet50, which is
a well known CNN architectures for the feature
extraction. Behind the last convolutional layer,
we explore the Batch Norm Fully Connected (BN-
FC) [12] structure to get the final 1024-dimension
embedding feature. The spectrogram prediction
network M and speaker discrimination network S
are both BN-FC structures. The output dimensions
are the number of Mel-bins (80) and the number of
speakers. The networks are trained by a stochastic
descent optimizer (SGD) with the batch size of 512.

In the experiment, The 66% samples (about
220,468 images) are used for training, and the rest
are used for testing. Both the train set and test set
contain the data of all 58 individuals (Base in table
1). To test the performance of our system on speaker
independent data, the partition of the train set and
test set is speaker-based. All the data sampled from
38 individuals among all 58 individuals are used for
training, and the rest 20 speakersâ data is used for
testing (Sep in table 1)

4.2. Compared methods

As most of previous attempts focus the mapping
using the speaker-dependent manner, we compare
the proposed approach with two baselines,
i.e., Source-Only model and ST-Adversarial
model. Specifically, the Source-Only model is
trained without domain-adaptation (no speaker

Table 1: Comparison results in term of
mean MSE (Lower is better), SSIM and CW-
SSIM (Both metrics ranges between 0 and 1.
Higher value denotes better performance, while
1 represents the predicted one is the same as the
ground-truth).

MSE SSIM CW-SSIM
Source-Only Base 1.88 0.73 0.70

Seq 1.88 0.74 0.73
ST-Adversarial Base 1.84 0.71 0.68

Seq 1.78 0.75 0.72
ID-Adversarial Seq 1.62 0.76 0.74

discrimination branch are incorporated into the
framework in Fig. 1). This model achieves
the articulatory-to-acoustic mapping by the
neural network without considering the speaker
information. The ST-Adversarial model employs
the source and target domain adversarial training
inspired by [13]. Specifically, the recognition task is
to identify whether the feature belongs to the source
or target domain. In our setting, the train set and test
set can be regarded as the source and target domain
respectively, and the speaker discrimination loss
LS optimizes a binary classification task (K = 2
for Eq.4). In contrast to these, in the proposed
ID-Adversarial model, the recognition task is to
identify the speaker accurately, and K is the number
of speakers during the training for Eq.4.

4.3. Objective Evaluation

Quantitative evaluation is conducted to demonstrate
the effectiveness of the proposed method. Three
evaluation metrics are used. 1) MSE; 2) Structural
Similarity Index (SSIM) between the reconstructed
spectrogram and the original spectrogram. 3)
Complex Wavelet Structural Similarity Index (CW-
SSIM) which is robust to small rotations and
translations compared to SSIM. The evaluation
results are shown in Table 1. The results show
that the adversarial model performs better than the
Source-Only model with MSE metric. Note that,
the ST-Adversarial model performs even worse than
the Source-Only model under the SSIM and CW-
SSIM, which indicates that source-target adversarial
training may not improve the structural similarity.
While the ID-adversarial model is effective in
various evaluation metrics.

We analyze the impact of the hyper-parameters
λ in Eq.5. The optimal value of λ is about 0.4
to 0.5. We use 0.4 in our following experiments.
It is worthwhile noting that λ should be increased
cautiously. In order to assign more weights to
the speaker discrimination network automatically,
the model ignores the main prediction task, which
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Figure 2: The illustration of generated spectrogram by different models for three different speakers.
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Figure 3: The MSE for 20 speakers with different models. In the middle subplot, all the points are above the
diagonal, which indicating that ID-Adversarial model is better than Source-Only model for all the 20 speakers.

makes the performance deteriorate rapidly.

4.4. Qualitative Analyses

We also performed a qualitative analysis to
investigate the quality of articulatory-to-acoustic
mapping. The generated spectrogram and
corresponding target are shown in Fig 2 from
three different speakers. We could see that, without
domain-adaptation (Source-Only), the spectrogram
generated by different speakers are relatively
similar. The spectrogram shows multiple horizontal
lines along with different frequencies and lacks
vocal details. In comparison, the vocal details
presented by the ID-Adversarial model are richer.

The formant in the spectrogram is more obvious
in the ID-Adversarial model. The formant
represents a set of adjacent harmonics which are
boosted by resonance in some part of the vocal
tract. Obvious formant means that in the subsequent
process of generating speech from the spectrogram,
the generated speech is clearer. Especially for
three different speakers, generated spectrograms are
different for the ID-adversarial model.

Fig 3 exhibits the improvement of domain-
adaptation approach. It shows the MSE for 20

speakers with different models in the Sep setting. In
the left subplot, all the points are above the diagonal,
which is indicating that the ID-Adversarial model
is better than the Source-Only model for all the 20
speakers. We could see that the domain-adaptation
approach improves the performance in the speaker-
independent scenario.

5. CONCLUSION

This paper proposed a method towards speaker-
independent articulatory-to-acoustic mapping,
using UTI. Specifically, the domain adaption
and adversarial method are applied in our
framework, which can decouple the generation
and speaker discrimination task. To demonstrate
the effectiveness of the proposed method, extensive
experiments are conducted. Objective evaluation is
conducted to compare the generated spectrograms
and ground truth, using three evaluation metrics.
The results indicate that our proposed method can
achieve superior performance under the speaker-
independent scenario. In the future, we plan to
conduct subjective listening tests to evaluate the
quality of speaker-independent samples.
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